Hybrid Quantum-Classical Stochastic Approach to Spin-Boson Models
- URL: http://arxiv.org/abs/2309.11553v1
- Date: Wed, 20 Sep 2023 18:00:05 GMT
- Title: Hybrid Quantum-Classical Stochastic Approach to Spin-Boson Models
- Authors: Naushad A. Kamar and Mohammad Maghrebi
- Abstract summary: We present an exact hybrid quantum-classical approach to different spin-boson models.
We argue that an intrinsic nonlinearity of bosonic modes can be tackled within this framework.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Interacting spin-boson models encompass a large class of physical systems,
spanning models with a single spin interacting with a bosonic bath -- a
paradigm of quantum impurity problems -- to models with many spins interacting
with a cavity mode -- a paradigm of quantum optics. Such models have emerged in
various quantum simulation platforms which are further subject to noise and
lossy dynamics. As generic many-body systems, dynamics of spin-boson models
constitutes a challenging problem. In this paper, we present an exact hybrid
quantum-classical stochastic approach to different spin-boson models which are
typically treated using distinct techniques. In this approach, the solution of
a classical stochastic equation (mimicking the bosonic modes) is input into a
quantum stochastic equation for the spins. Furthermore, the spins are
effectively decoupled for each stochastic realization, but this comes at the
expense of sampling over unphysical states. Remarkably, the dynamics remains
Markovian in our approach even in the strong coupling regime. Moreover, we
utilize Markovian dissipation to make \textit{causality} manifest, thus
ensuring hermiticity (though not positivity) of the density matrix for each
realization. Finally, in contrast with many existing methods, we place no
restriction on the initial state, and further argue that an intrinsic
nonlinearity of the bosonic modes can be tackled within this framework. We
benchmark and showcase the utility of our approach in several examples,
specifically in cases where an exact numerical calculation is far from reach.
Related papers
- Simulating continuous-space systems with quantum-classical wave functions [0.0]
Non-relativistic interacting quantum many-body systems are naturally described in terms of continuous-space Hamiltonians.
Current algorithms require discretization, which usually amounts to choosing a finite basis set, inevitably introducing errors.
We propose an alternative, discretization-free approach that combines classical and quantum resources in a global variational ansatz.
arXiv Detail & Related papers (2024-09-10T10:54:59Z) - Hubbard physics with Rydberg atoms: using a quantum spin simulator to simulate strong fermionic correlations [0.0]
We propose a hybrid quantum-classical method to investigate the equilibrium physics and the dynamics of strongly correlated fermionic models with spin-based quantum processors.
Our proposal avoids the usual pitfalls of fermion-to-spin mappings thanks to a slave-spin method which allows to approximate the original Hamiltonian into a sum of self-correlated free-fermions and spin Hamiltonians.
We show, through realistic numerical simulations of current Rydberg processors, that the method yields quantitatively viable results even in the presence of imperfections.
arXiv Detail & Related papers (2023-12-13T11:18:40Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Onset of non-Gaussian quantum physics in pulsed squeezing with
mesoscopic fields [1.2252572522254723]
We study the emergence of non-Gaussian quantum features in pulsed squeezed light generation with a mesoscopic number of pump photons.
We argue that the state of the art in nonlinear nanophotonics is quickly approaching this regime.
arXiv Detail & Related papers (2021-11-27T02:49:10Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z) - Dynamical hysteresis properties of the driven-dissipative Bose-Hubbard
model with a Gutzwiller Monte Carlo approach [0.0]
We study the dynamical properties of a driven-dissipative Bose-Hubbard model in the strongly interacting regime.
We take classical and quantum correlations into account.
We show that approximation techniques relying on a unimodal distribution such as the mean field and $1/z$ expansion drastically underestimate the particle number fluctuations.
arXiv Detail & Related papers (2020-08-17T13:50:10Z) - Non-Markovianity of Quantum Brownian Motion [0.0]
We study quantum non-Markovian dynamics of the Caldeira-Leggett model, a prototypical model for quantum Brownian motion.
A comparison of our results with the corresponding results for the spin-boson problem show a remarkable similarity in the structure of non-Markovian behavior of the two paradigmatic models.
arXiv Detail & Related papers (2020-07-06T16:35:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.