Hubbard physics with Rydberg atoms: using a quantum spin simulator to simulate strong fermionic correlations
- URL: http://arxiv.org/abs/2312.08065v3
- Date: Wed, 19 Jun 2024 07:45:40 GMT
- Title: Hubbard physics with Rydberg atoms: using a quantum spin simulator to simulate strong fermionic correlations
- Authors: Antoine Michel, Loïc Henriet, Christophe Domain, Antoine Browaeys, Thomas Ayral,
- Abstract summary: We propose a hybrid quantum-classical method to investigate the equilibrium physics and the dynamics of strongly correlated fermionic models with spin-based quantum processors.
Our proposal avoids the usual pitfalls of fermion-to-spin mappings thanks to a slave-spin method which allows to approximate the original Hamiltonian into a sum of self-correlated free-fermions and spin Hamiltonians.
We show, through realistic numerical simulations of current Rydberg processors, that the method yields quantitatively viable results even in the presence of imperfections.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a hybrid quantum-classical method to investigate the equilibrium physics and the dynamics of strongly correlated fermionic models with spin-based quantum processors. Our proposal avoids the usual pitfalls of fermion-to-spin mappings thanks to a slave-spin method which allows to approximate the original Hamiltonian into a sum of self-correlated free-fermions and spin Hamiltonians. Taking as an example a Rydberg-based analog quantum processor to solve the interacting spin model, we avoid the challenges of variational algorithms or Trotterization methods. We explore the robustness of the method to experimental imperfections by applying it to the half-filled, single-orbital Hubbard model on the square lattice in and out of equilibrium. We show, through realistic numerical simulations of current Rydberg processors, that the method yields quantitatively viable results even in the presence of imperfections: it allows to gain insights into equilibrium Mott physics as well as the dynamics under interaction quenches. This method thus paves the way to the investigation of physical regimes -- whether out-of-equilibrium, doped, or multiorbital -- that are difficult to explore with classical processors.
Related papers
- Simulating spin biology using a digital quantum computer: Prospects on a near-term quantum hardware emulator [0.0]
We leverage Trotterization to map coherent radical pair spin dynamics onto a digital gate-based quantum simulation.
We identify approximately 15 Trotter steps to be sufficient for faithfully reproducing the coupled spin dynamics of a prototypical system.
arXiv Detail & Related papers (2024-06-18T18:09:31Z) - Ground state energy and magnetization curve of a frustrated magnetic
system from real-time evolution on a digital quantum processor [0.47191037525744733]
We show how to construct efficient quantum circuits to implement time evolution for the Heisenberg model.
We also give an empirical demonstration on small systems that the hybrid algorithms can efficiently find the ground state energy and the magnetization curve.
arXiv Detail & Related papers (2024-01-05T18:57:34Z) - Hybrid Quantum-Classical Stochastic Approach to Spin-Boson Models [0.0]
We present an exact hybrid quantum-classical approach to different spin-boson models.
We argue that an intrinsic nonlinearity of bosonic modes can be tackled within this framework.
arXiv Detail & Related papers (2023-09-20T18:00:05Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Realistic simulations of spin squeezing and cooperative coupling effects
in large ensembles of interacting two-level systems [0.0]
We describe an efficient numerical method for simulating the dynamics of interacting spin ensembles in the presence of dephasing and decay.
This opens up the possibility to perform accurate real-scale simulations of a diverse range of experiments in quantum optics or with solid-state spin ensembles under realistic laboratory conditions.
arXiv Detail & Related papers (2021-04-30T18:00:00Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Simulation of complex dynamics of mean-field $p$-spin models using
measurement-based quantum feedback control [0.0]
We apply a new method for simulating nonlinear dynamics of many-body spin systems using quantum measurement and feedback.
We study applications including properties of dynamical phase transitions and the emergence of spontaneous symmetry breaking in the adiabatic dynamics of the collective spin.
arXiv Detail & Related papers (2020-04-23T18:22:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.