Generative AI in Mafia-like Game Simulation
- URL: http://arxiv.org/abs/2309.11672v1
- Date: Wed, 20 Sep 2023 22:38:34 GMT
- Title: Generative AI in Mafia-like Game Simulation
- Authors: Munyeong Kim and Sungsu Kim
- Abstract summary: The study aimed to showcase the model's potential in understanding, decision-making, and interaction during game scenarios.
The findings suggest that while GPT-4 exhibits promising advancements over earlier models, there remains potential for further development.
- Score: 2.44755919161855
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this research, we explore the efficacy and potential of Generative AI
models, specifically focusing on their application in role-playing simulations
exemplified through Spyfall, a renowned mafia-style game. By leveraging GPT-4's
advanced capabilities, the study aimed to showcase the model's potential in
understanding, decision-making, and interaction during game scenarios.
Comparative analyses between GPT-4 and its predecessor, GPT-3.5-turbo,
demonstrated GPT-4's enhanced adaptability to the game environment, with
significant improvements in posing relevant questions and forming human-like
responses. However, challenges such as the model;s limitations in bluffing and
predicting opponent moves emerged. Reflections on game development, financial
constraints, and non-verbal limitations of the study were also discussed. The
findings suggest that while GPT-4 exhibits promising advancements over earlier
models, there remains potential for further development, especially in
instilling more human-like attributes in AI.
Related papers
- Generative AI for Enhancing Active Learning in Education: A Comparative Study of GPT-3.5 and GPT-4 in Crafting Customized Test Questions [2.0411082897313984]
This study investigates how LLMs, specifically GPT-3.5 and GPT-4, can develop tailored questions for Grade 9 math.
By utilizing an iterative method, these models adjust questions based on difficulty and content, responding to feedback from a simulated'student' model.
arXiv Detail & Related papers (2024-06-20T00:25:43Z) - How Well Does GPT-4V(ision) Adapt to Distribution Shifts? A Preliminary
Investigation [90.93999543169296]
GPT-4V acts as the most advanced publicly accessible multimodal foundation model.
This study rigorously evaluates GPT-4V's adaptability and generalization capabilities in dynamic environments.
arXiv Detail & Related papers (2023-12-12T16:48:07Z) - The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision) [121.42924593374127]
We analyze the latest model, GPT-4V, to deepen the understanding of LMMs.
GPT-4V's unprecedented ability in processing arbitrarily interleaved multimodal inputs makes it a powerful multimodal generalist system.
GPT-4V's unique capability of understanding visual markers drawn on input images can give rise to new human-computer interaction methods.
arXiv Detail & Related papers (2023-09-29T17:34:51Z) - Suspicion-Agent: Playing Imperfect Information Games with Theory of Mind Aware GPT-4 [37.64921394844022]
GPT-4, the recent breakthrough in large language models (LLMs) trained on massive passive data, is notable for its knowledge retrieval and reasoning abilities.
This paper delves into the applicability of GPT-4's learned knowledge for imperfect information games.
We introduce Suspicion-Agent, an innovative agent that leverages GPT-4's capabilities for performing in imperfect information games.
arXiv Detail & Related papers (2023-09-29T14:30:03Z) - Instructed to Bias: Instruction-Tuned Language Models Exhibit Emergent Cognitive Bias [57.42417061979399]
Recent studies show that instruction tuning (IT) and reinforcement learning from human feedback (RLHF) improve the abilities of large language models (LMs) dramatically.
In this work, we investigate the effect of IT and RLHF on decision making and reasoning in LMs.
Our findings highlight the presence of these biases in various models from the GPT-3, Mistral, and T5 families.
arXiv Detail & Related papers (2023-08-01T01:39:25Z) - Gpt-4: A Review on Advancements and Opportunities in Natural Language
Processing [0.0]
Generative Pre-trained Transformer 4 (GPT-4) is the fourth-generation language model in the GPT series, developed by OpenAI.
GPT-4 has a larger model size (more than one trillion), better multilingual capabilities, improved contextual understanding, and reasoning capabilities than GPT-3.
Some of the potential applications of GPT-4 include chatbots, personal assistants, language translation, text summarization, and question-answering.
arXiv Detail & Related papers (2023-05-04T22:46:43Z) - Performance of ChatGPT on the US Fundamentals of Engineering Exam:
Comprehensive Assessment of Proficiency and Potential Implications for
Professional Environmental Engineering Practice [0.0]
This study investigates the feasibility and effectiveness of using ChatGPT, a GPT-4 based model, in achieving satisfactory performance on the Fundamentals of Engineering (FE) Environmental Exam.
The findings reflect remarkable improvements in mathematical capabilities across successive iterations of ChatGPT models, showcasing their potential in solving complex engineering problems.
arXiv Detail & Related papers (2023-04-20T16:54:34Z) - Sparks of Artificial General Intelligence: Early experiments with GPT-4 [66.1188263570629]
GPT-4, developed by OpenAI, was trained using an unprecedented scale of compute and data.
We demonstrate that GPT-4 can solve novel and difficult tasks that span mathematics, coding, vision, medicine, law, psychology and more.
We believe GPT-4 could reasonably be viewed as an early (yet still incomplete) version of an artificial general intelligence (AGI) system.
arXiv Detail & Related papers (2023-03-22T16:51:28Z) - A Comprehensive Capability Analysis of GPT-3 and GPT-3.5 Series Models [71.42197262495056]
GPT series models have gained considerable attention due to their exceptional natural language processing capabilities.
We select six representative models, comprising two GPT-3 series models and four GPT-3.5 series models.
We evaluate their performance on nine natural language understanding (NLU) tasks using 21 datasets.
Our experiments reveal that the overall ability of GPT series models on NLU tasks does not increase gradually as the models evolve.
arXiv Detail & Related papers (2023-03-18T14:02:04Z) - GPT-4 Technical Report [116.90398195245983]
GPT-4 is a large-scale, multimodal model which can accept image and text inputs and produce text outputs.
It exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers.
arXiv Detail & Related papers (2023-03-15T17:15:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.