論文の概要: LLM-based Medical Assistant Personalization with Short- and Long-Term Memory Coordination
- arxiv url: http://arxiv.org/abs/2309.11696v3
- Date: Thu, 4 Apr 2024 16:23:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 20:22:43.430571
- Title: LLM-based Medical Assistant Personalization with Short- and Long-Term Memory Coordination
- Title(参考訳): 短期記憶コーディネーションを用いたLCMを用いた医療アシスタントのパーソナライゼーション
- Authors: Kai Zhang, Yangyang Kang, Fubang Zhao, Xiaozhong Liu,
- Abstract要約: 大規模言語モデル(LLM)は、自然言語の理解と生成に優れた能力を発揮している。
本稿では,パラメータ効率のよい微細チューニング(PEFT)スキーマを備え,医療アシスタントをパーソナライズするための新しい計算バイオニックメモリ機構を提案する。
- 参考スコア(独自算出の注目度): 20.269899169364397
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs), such as GPT3.5, have exhibited remarkable proficiency in comprehending and generating natural language. On the other hand, medical assistants hold the potential to offer substantial benefits for individuals. However, the exploration of LLM-based personalized medical assistant remains relatively scarce. Typically, patients converse differently based on their background and preferences which necessitates the task of enhancing user-oriented medical assistant. While one can fully train an LLM for this objective, the resource consumption is unaffordable. Prior research has explored memory-based methods to enhance the response with aware of previous mistakes for new queries during a dialogue session. We contend that a mere memory module is inadequate and fully training an LLM can be excessively costly. In this study, we propose a novel computational bionic memory mechanism, equipped with a parameter-efficient fine-tuning (PEFT) schema, to personalize medical assistants.
- Abstract(参考訳): GPT3.5のような大規模言語モデル(LLM)は、自然言語の理解と生成に優れた能力を発揮している。
一方、医療助手は個人に多大な利益をもたらす可能性を秘めている。
しかし、LSMをベースとしたパーソナライズされた医療アシスタントの探索は依然として比較的少ない。
典型的には、患者は、ユーザ指向の医療アシスタントを強化するタスクを必要とする背景や嗜好に基づいて異なる会話をする。
この目的のために LLM を完全に訓練することは可能だが、リソース消費は計り知れない。
これまでの研究では、対話セッション中に新しいクエリに対する以前の誤りを認識して応答を高めるためのメモリベースの手法が検討されてきた。
我々は、単にメモリモジュールが不十分であり、LLMを完全に訓練することは、過度にコストがかかることを主張する。
本研究では,パラメータ効率のよい微細チューニング(PEFT)スキーマを備え,医療アシスタントをパーソナライズするための新しい計算バイオニックメモリ機構を提案する。
関連論文リスト
- A Survey on Large Language Models from General Purpose to Medical Applications: Datasets, Methodologies, and Evaluations [5.265452667976959]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて驚くべきパフォーマンスを示している。
本調査は,一般のLSMをベースとした医療用LSMの訓練方法について,体系的に検討する。
論文 参考訳(メタデータ) (2024-06-14T02:42:20Z) - Hello Again! LLM-powered Personalized Agent for Long-term Dialogue [63.65128176360345]
モデルに依存しない長期対話エージェント(LD-Agent)を導入する。
イベント認識、ペルソナ抽出、応答生成のための3つの独立した調整可能なモジュールが組み込まれている。
LD-Agentの有効性, 汎用性, クロスドメイン性について実験的に検証した。
論文 参考訳(メタデータ) (2024-06-09T21:58:32Z) - MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory [49.96019697955383]
本稿では,構造化および明示的な読み書きメモリモジュールを統合することで,知識能力を向上させる新しい手法であるMemLLMを紹介する。
実験の結果,MemLLMは言語モデリング全般,特に言語モデルにおいて,性能と解釈可能性を向上させることが示唆された。
私たちは MemLLM を,メモリ拡張による LLM の基盤化と現実化に向けた重要なステップと捉えています。
論文 参考訳(メタデータ) (2024-04-17T18:13:16Z) - Personalized LLM Response Generation with Parameterized Memory Injection [19.417549781029233]
大規模言語モデル(LLM)は、自然言語の理解と生成に優れた能力を発揮している。
パーソナライズされたLSM応答生成は、医療などの重要な分野の個人に多大な利益をもたらす可能性がある。
論文 参考訳(メタデータ) (2024-04-04T16:20:34Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - LLMs Accelerate Annotation for Medical Information Extraction [7.743388571513413]
本稿では,LLM(Large Language Models)と人間の専門知識を組み合わせた手法を提案する。
医療情報抽出タスクにおいて,我々の手法を厳格に評価し,我々のアプローチが人的介入を大幅に削減するだけでなく,高い精度を維持していることを示す。
論文 参考訳(メタデータ) (2023-12-04T19:26:13Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
我々は中国医学領域向けに明示的に設計されたベンチマークLSMであるChiMed-GPTを提案する。
ChiMed-GPTは、事前訓練、SFT、RLHFを含む総合的な訓練体制を実施。
我々は,ChiMed-GPTを患者識別に関する態度尺度の実行を促すことによって,潜在的なバイアスを分析した。
論文 参考訳(メタデータ) (2023-11-10T12:25:32Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
大規模言語モデル(LLM)は、人間のレベルの言語理解と推論を模倣する有望な能力を示している。
本稿では,医学におけるLSMの応用と意義について概説する。
論文 参考訳(メタデータ) (2023-11-03T13:51:36Z) - Augmenting Black-box LLMs with Medical Textbooks for Clinical Question
Answering [54.13933019557655]
LLMs Augmented with Medical Textbooks (LLM-AMT)を提案する。
LLM-AMTは、プラグイン・アンド・プレイモジュールを使用して、権威ある医学教科書をLLMのフレームワークに統合する。
検索コーパスとしての医学教科書は,医学領域におけるウィキペディアよりも効果的な知識データベースであることが確認された。
論文 参考訳(メタデータ) (2023-09-05T13:39:38Z) - MedAlign: A Clinician-Generated Dataset for Instruction Following with
Electronic Medical Records [60.35217378132709]
大型言語モデル(LLM)は、人間レベルの流布で自然言語の指示に従うことができる。
医療のための現実的なテキスト生成タスクにおけるLCMの評価は依然として困難である。
我々は、EHRデータのための983の自然言語命令のベンチマークデータセットであるMedAlignを紹介する。
論文 参考訳(メタデータ) (2023-08-27T12:24:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。