論文の概要: Personalized LLM Response Generation with Parameterized Memory Injection
- arxiv url: http://arxiv.org/abs/2404.03565v2
- Date: Tue, 11 Jun 2024 10:47:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 22:03:14.328110
- Title: Personalized LLM Response Generation with Parameterized Memory Injection
- Title(参考訳): パラメータ化メモリインジェクションを用いたパーソナライズLDM応答生成
- Authors: Kai Zhang, Lizhi Qing, Yangyang Kang, Xiaozhong Liu,
- Abstract要約: 大規模言語モデル(LLM)は、自然言語の理解と生成に優れた能力を発揮している。
パーソナライズされたLSM応答生成は、医療などの重要な分野の個人に多大な利益をもたらす可能性がある。
- 参考スコア(独自算出の注目度): 19.417549781029233
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have exhibited remarkable proficiency in comprehending and generating natural language. On the other hand, personalized LLM response generation holds the potential to offer substantial benefits for individuals in critical areas such as medical. Existing research has explored memory-augmented methods to prompt the LLM with pre-stored user-specific knowledge for personalized response generation in terms of new queries. We contend that such paradigm is unable to perceive fine-granularity information. In this study, we propose a novel \textbf{M}emory-\textbf{i}njected approach using parameter-efficient fine-tuning (PEFT) and along with a Bayesian Optimisation searching strategy to achieve \textbf{L}LM \textbf{P}ersonalization(\textbf{MiLP}).
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語の理解と生成に優れた能力を発揮している。
一方、パーソナライズされたLDM応答生成は、医療などの重要な分野の個人に多大な利益をもたらす可能性がある。
既存の研究では、新しいクエリの点から、パーソナライズされた応答生成のためのユーザー固有の知識を予め蓄積したLLMに促すためのメモリ拡張手法が検討されている。
このようなパラダイムは、微粒な粒度情報を知覚できない、と我々は主張する。
本研究では,パラメータ係数ファインチューニング(PEFT)とベイズ最適化探索戦略を併用して,新しい「textbf{M}emory-\textbf{i}njected approach」を提案し,それを用いて「textbf{L}LM \textbf{P}ersonalization(\textbf{MiLP})」を実現する。
関連論文リスト
- Soft Prompting for Unlearning in Large Language Models [11.504012974208466]
この研究は、データ保護規制を動機とした大規模言語モデルのための機械学習の研究に焦点をあてる。
我々はtextbfUntextbflearning (SPUL) のための textbfSoft textbfPrompting フレームワークを提案する。
本研究では,提案手法の厳密な評価を行い,SPULが実用性と忘れとのトレードオフを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2024-06-17T19:11:40Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - Understanding Privacy Risks of Embeddings Induced by Large Language Models [75.96257812857554]
大きな言語モデルは、人工知能の初期の兆候を示すが、幻覚に苦しむ。
1つの有望な解決策は、外部知識を埋め込みとして保存し、LLMを検索強化世代に支援することである。
近年の研究では、事前学習された言語モデルによるテキスト埋め込みから、元のテキストを部分的に再構築できることが実験的に示されている。
論文 参考訳(メタデータ) (2024-04-25T13:10:48Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - ConfusionPrompt: Practical Private Inference for Online Large Language Models [3.8134804426693094]
最先端の大規模言語モデル(LLM)は一般的にオンラインサービスとしてデプロイされ、ユーザーはクラウドサーバーに詳細なプロンプトを送信する必要がある。
我々は,従来のプロンプトを小さなサブプロンプトに分解することで,ユーザのプライバシを保護する,プライベートLLM推論のための新しいフレームワークであるConfusionPromptを紹介する。
コンフュージョンプロンプトは,オープンソースモデルと摂動に基づく手法を用いて,局所的推論手法よりもはるかに高い実用性を実現することを示す。
論文 参考訳(メタデータ) (2023-12-30T01:26:42Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
生成型大規模言語モデル(LLM)生成コンテキスト情報の利用について検討する。
自己教師型音声モデルの微調整中に生成した情報を抽出する手法を提案する。
本稿では,SLUE と Libri-light のベンチマークを用いて,自動音声認識,名前付きエンティティ認識,感情分析を行う手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T15:46:02Z) - Integrating Summarization and Retrieval for Enhanced Personalization via
Large Language Models [11.950478880423733]
パーソナライゼーションは自然言語処理(NLP)システムにおけるユーザエクスペリエンスにおいて重要な要素である。
LLM(Large Language Models)の出現によって、重要な疑問は、これらのモデルを使ってユーザエクスペリエンスをよりパーソナライズする方法である。
LLMが生成するタスク対応ユーザ要約を用いた,新しい要約型パーソナライゼーションを提案する。
論文 参考訳(メタデータ) (2023-10-30T23:40:41Z) - LLM-based Medical Assistant Personalization with Short- and Long-Term Memory Coordination [20.269899169364397]
大規模言語モデル(LLM)は、自然言語の理解と生成に優れた能力を発揮している。
本稿では,パラメータ効率のよい微細チューニング(PEFT)スキーマを備え,医療アシスタントをパーソナライズするための新しい計算バイオニックメモリ機構を提案する。
論文 参考訳(メタデータ) (2023-09-21T00:34:33Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLMは、大規模な言語モデルに一般的な読み書きメモリユニットを装備する新しいフレームワークである。
デビッドソンのセマンティクス理論に触発され、三重項の形で知識を抽出し保存する。
本フレームワークは,時間に基づく質問応答タスクの処理において,堅牢な性能を示す。
論文 参考訳(メタデータ) (2023-05-23T17:53:38Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。