論文の概要: Multi-level Asymmetric Contrastive Learning for Volumetric Medical Image Segmentation Pre-training
- arxiv url: http://arxiv.org/abs/2309.11876v3
- Date: Thu, 13 Feb 2025 07:31:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:46:18.834889
- Title: Multi-level Asymmetric Contrastive Learning for Volumetric Medical Image Segmentation Pre-training
- Title(参考訳): ボリューム・メディカル・イメージ・セグメンテーション・プレトレーニングのための多レベル非対称コントラスト学習
- Authors: Shuang Zeng, Lei Zhu, Xinliang Zhang, Micky C Nnamdi, Wenqi Shi, J Ben Tamo, Qian Chen, Hangzhou He, Lujia Jin, Zifeng Tian, Qiushi Ren, Zhaoheng Xie, Yanye Lu,
- Abstract要約: 医用画像分割事前学習のためのMACLという新しいコントラスト学習フレームワークを提案する。
具体的には、プリトレインエンコーダとデコーダを同時に使用する非対称コントラスト学習構造を設計する。
8つの医用画像データセットの実験は、MACLフレームワークが既存の11のコントラスト学習戦略より優れていることを示している。
- 参考スコア(独自算出の注目度): 17.9004421784014
- License:
- Abstract: Medical image segmentation is a fundamental yet challenging task due to the arduous process of acquiring large volumes of high-quality labeled data from experts. Contrastive learning offers a promising but still problematic solution to this dilemma. Firstly existing medical contrastive learning strategies focus on extracting image-level representation, which ignores abundant multi-level representations. Furthermore they underutilize the decoder either by random initialization or separate pre-training from the encoder, thereby neglecting the potential collaboration between the encoder and decoder. To address these issues, we propose a novel multi-level asymmetric contrastive learning framework named MACL for volumetric medical image segmentation pre-training. Specifically, we design an asymmetric contrastive learning structure to pre-train encoder and decoder simultaneously to provide better initialization for segmentation models. Moreover, we develop a multi-level contrastive learning strategy that integrates correspondences across feature-level, image-level, and pixel-level representations to ensure the encoder and decoder capture comprehensive details from representations of varying scales and granularities during the pre-training phase. Finally, experiments on 8 medical image datasets indicate our MACL framework outperforms existing 11 contrastive learning strategies. i.e. Our MACL achieves a superior performance with more precise predictions from visualization figures and 1.72%, 7.87%, 2.49% and 1.48% Dice higher than previous best results on ACDC, MMWHS, HVSMR and CHAOS with 10% labeled data, respectively. And our MACL also has a strong generalization ability among 5 variant U-Net backbones. Our code will be released at https://github.com/stevezs315/MACL.
- Abstract(参考訳): 医用画像のセグメンテーションは、専門家から大量の高品質なラベル付きデータを取得するという困難なプロセスのため、基本的な課題である。
対照的な学習は、このジレンマに対して有望だがまだ問題のある解決策を提供する。
既存の医用コントラスト学習戦略は, 豊富な多段階表現を無視した画像レベルの表現の抽出に重点を置いている。
さらに、デコーダをランダムに初期化するか、エンコーダから事前学習を分離することにより、エンコーダとデコーダ間の潜在的な協調を無視する。
これらの課題に対処するために, ボリューム画像分割事前学習のためのMACLという, マルチレベル非対称なコントラスト学習フレームワークを提案する。
具体的には,プレトレインエンコーダとデコーダを同時に使用する非対称なコントラスト学習構造を設計し,セグメンテーションモデルのより優れた初期化を実現する。
さらに,特徴レベル,画像レベル,画素レベルの対応性を統合したマルチレベルコントラスト学習戦略を開発し,事前学習期間中の様々なスケールや粒度の表現から,エンコーダとデコーダが包括的詳細をキャプチャできるようにする。
最後に、8つの医用画像データセットの実験から、MACLフレームワークは既存の11のコントラスト学習戦略より優れていることが示された。
ACDC, MMWHS, HVSMR, CHAOSを10%のラベル付きデータで比較し, 視認率1.72%, 7.87%, 2.49%, 1.48%のDiceを精度良く予測し, 精度が向上した。
また、我々のMACLは、5種類のU-Netバックボーンの間で強力な一般化能力を持つ。
私たちのコードはhttps://github.com/stevezs315/MACLでリリースされます。
関連論文リスト
- Large Language Models for Multimodal Deformable Image Registration [50.91473745610945]
そこで本研究では,様々な医用画像からの深い特徴の整合を図るために,新しい粗いMDIRフレームワークLLM-Morphを提案する。
具体的には、まずCNNエンコーダを用いて、クロスモーダル画像ペアから深い視覚的特徴を抽出し、次に、最初のアダプタを使ってこれらのトークンを調整する。
第3に、トークンのアライメントのために、他の4つのアダプタを使用して、LLM符号化トークンをマルチスケールの視覚特徴に変換し、マルチスケールの変形場を生成し、粗いMDIRタスクを容易にする。
論文 参考訳(メタデータ) (2024-08-20T09:58:30Z) - MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training [103.72844619581811]
MLLM(Performant Multimodal Large Language Models)を構築する。
特に,さまざまなアーキテクチャコンポーネントとデータ選択の重要性について検討する。
本稿では,画像キャプチャ,インターリーブ画像テキスト,テキストのみのデータを組み合わせた大規模マルチモーダル事前学習について述べる。
論文 参考訳(メタデータ) (2024-03-14T17:51:32Z) - Semi-Mamba-UNet: Pixel-Level Contrastive and Pixel-Level Cross-Supervised Visual Mamba-based UNet for Semi-Supervised Medical Image Segmentation [11.637738540262797]
本研究では,従来のCNNベースのUNetと純粋に視覚的なMambaベースのエンコーダデコーダアーキテクチャを組み込んだセミマンバUNetを,半教師付き学習フレームワークに統合する。
この革新的なSSLアプローチは、両方のネットワークを利用して擬似ラベルを生成し、ピクセルレベルで相互に相互に監督する。
本稿では,2対のプロジェクタを用いた自己教師型画素レベルのコントラスト学習戦略を導入し,特徴学習機能をさらに強化する。
論文 参考訳(メタデータ) (2024-02-11T17:09:21Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
医用画像から多様なセグメンテーションを仕上げるマルチスケールサブトラクションネットワーク(M$2$SNet)を提案する。
本手法は,4つの異なる医用画像セグメンテーションタスクの11つのデータセットに対して,異なる評価基準の下で,ほとんどの最先端手法に対して好意的に機能する。
論文 参考訳(メタデータ) (2023-03-20T06:26:49Z) - Multi-scale Transformer Network with Edge-aware Pre-training for
Cross-Modality MR Image Synthesis [52.41439725865149]
クロスモダリティ磁気共鳴(MR)画像合成は、与えられたモダリティから欠落するモダリティを生成するために用いられる。
既存の(教師付き学習)手法は、効果的な合成モデルを訓練するために、多くのペア化されたマルチモーダルデータを必要とすることが多い。
マルチスケールトランスフォーマーネットワーク(MT-Net)を提案する。
論文 参考訳(メタデータ) (2022-12-02T11:40:40Z) - IDEAL: Improved DEnse locAL Contrastive Learning for Semi-Supervised
Medical Image Segmentation [3.6748639131154315]
我々は,メートル法学習の概念をセグメンテーションタスクに拡張する。
本稿では,高密度画素レベルの特徴量を得るための単純な畳み込みプロジェクションヘッドを提案する。
下流タスクに対して,2ストリーム正規化トレーニングを含む双方向正規化機構を考案した。
論文 参考訳(メタデータ) (2022-10-26T23:11:02Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
限られたラベルを持つ医用画像セグメンテーションにおける半教師あり学習の性能向上を目指す。
我々は、ラベルのない画像に対照的な損失を与えることによって、特徴レベルで潜在表現を直接学習する。
我々はMRIとCTのセグメンテーションデータセットの実験を行い、提案手法が最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2021-05-27T03:27:58Z) - Modeling the Probabilistic Distribution of Unlabeled Data forOne-shot
Medical Image Segmentation [40.41161371507547]
我々は1ショットの脳磁気共鳴画像(MRI)画像分割のためのデータ拡張法を開発した。
提案手法は,MRI画像1枚(atlas)とラベルなし画像数枚のみを利用する。
本手法は最先端のワンショット医療セグメンテーション法より優れている。
論文 参考訳(メタデータ) (2021-02-03T12:28:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。