論文の概要: Enhancing SAEAs with Unevaluated Solutions: A Case Study of Relation
Model for Expensive Optimization
- arxiv url: http://arxiv.org/abs/2309.11994v2
- Date: Sun, 8 Oct 2023 09:04:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 03:40:53.304881
- Title: Enhancing SAEAs with Unevaluated Solutions: A Case Study of Relation
Model for Expensive Optimization
- Title(参考訳): 未評価ソリューションによるSAEAの強化:費用対効果を考慮した関係モデルの一事例
- Authors: Hao Hao and Xiaoqun Zhang and Aimin Zhou
- Abstract要約: 本稿では,SAEAの効率を高めるために,未評価解を用いた枠組みを提案する。
代理モデルを用いて、評価無しに新しい解を直接生成するための高品質な解を同定する。
- 参考スコア(独自算出の注目度): 6.382398222493027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Surrogate-assisted evolutionary algorithms (SAEAs) hold significant
importance in resolving expensive optimization problems~(EOPs). Extensive
efforts have been devoted to improving the efficacy of SAEAs through the
development of proficient model-assisted selection methods. However, generating
high-quality solutions is a prerequisite for selection. The fundamental
paradigm of evaluating a limited number of solutions in each generation within
SAEAs reduces the variance of adjacent populations, thus impacting the quality
of offspring solutions. This is a frequently encountered issue, yet it has not
gained widespread attention. This paper presents a framework using unevaluated
solutions to enhance the efficiency of SAEAs. The surrogate model is employed
to identify high-quality solutions for direct generation of new solutions
without evaluation. To ensure dependable selection, we have introduced two
tailored relation models for the selection of the optimal solution and the
unevaluated population. A comprehensive experimental analysis is performed on
two test suites, which showcases the superiority of the relation model over
regression and classification models in the selection phase. Furthermore, the
surrogate-selected unevaluated solutions with high potential have been shown to
significantly enhance the efficiency of the algorithm.
- Abstract(参考訳): サロゲート支援進化アルゴリズム(SAEA)は、高価な最適化問題の解決において重要な役割を果たす。
有能なモデル支援選択法の開発を通じて,SAEAの有効性向上に多大な努力が注がれている。
しかし、高品質なソリューションの生成は、選択の前提条件である。
SAEA内の各世代における限られた数の解を評価する基本的なパラダイムは、隣接する集団の分散を減らし、子孫の解の質に影響を及ぼす。
これはしばしば遭遇する問題であるが、広く注目されることはなかった。
本稿では,SAEAの効率を高めるために,未評価解を用いた枠組みを提案する。
surrogateモデルは、評価なしで新しいソリューションを直接生成するための高品質なソリューションを特定するために使用される。
そこで我々は, 最適解と未評価個体群の選択のための2つの調整付き関係モデルを導入した。
2つのテストスイートで総合的な実験分析を行い、選択フェーズにおける回帰モデルと分類モデルよりも関係モデルの優位性を示す。
さらに,高ポテンシャルのサロゲート選択不定値解はアルゴリズムの効率を著しく向上させることが示されている。
関連論文リスト
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - A First Look at Kolmogorov-Arnold Networks in Surrogate-assisted Evolutionary Algorithms [5.198324938447394]
サロゲート支援進化アルゴリズム(SAEA)は高価な問題を解決するための重要な手法である。
本稿では,SAEA内の代理モデルとしてKAN(Kolmogorov-Arnold Networks)を紹介する。
KansはSAEA内での賞賛可能なパフォーマンスを示し、関数呼び出しの数を効果的に減らし、最適化効率を向上する。
論文 参考訳(メタデータ) (2024-05-26T09:12:44Z) - An Efficient Approach for Solving Expensive Constrained Multiobjective Optimization Problems [0.0]
効率的な確率的選択に基づく制約付き多目的EAをPSCMOEAと呼ぶ。
a) 評価された解の実現可能性と収束状態に基づく適応探索境界同定スキームのような新しい要素を含む。
ECMOPを模擬する低評価予算を用いて, 幅広い制約付き問題に対して, 数値実験を行った。
論文 参考訳(メタデータ) (2024-05-22T02:32:58Z) - Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis [5.6787965501364335]
ブラックボックス最適化問題は、多くの現実世界のアプリケーションで一般的な問題である。
これらの問題はインプット・アウトプット・インタラクションを通じて内部動作へのアクセスなしに最適化する必要がある。
このような問題に対処するために2つの広く使われている勾配のない最適化手法が用いられている。
本稿では,2つの手法間のモデル不確実性の類似点と相違点を明らかにすることを目的とする。
論文 参考訳(メタデータ) (2024-03-21T13:59:19Z) - V-STaR: Training Verifiers for Self-Taught Reasoners [71.53113558733227]
V-STaR はモデル生成解の正しさを判断する DPO を用いて検証器を訓練する。
複数のイテレーションでV-STaRを実行すると、徐々により良い推論器と検証器が得られる。
論文 参考訳(メタデータ) (2024-02-09T15:02:56Z) - Dual-stage optimizer for systematic overestimation adjustment applied to
multi-objective genetic algorithms for biomarker selection [0.18648070031379424]
特徴選択法を用いたバイオマーカー同定は,特徴数における予測能力とパシモニーのトレードオフを伴う多目的問題として扱うことができる。
提案するDOSA-MOは多目的最適化ラッパーアルゴリズムで,元の推定値,分散度,および解の特徴セットサイズが過大評価を予測する。
論文 参考訳(メタデータ) (2023-12-27T16:13:14Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
公正な予測モデルを得るための直接的なアプローチは、公正な制約の下で予測性能を最適化することでモデルを訓練することである。
フェアネスを考慮した機械学習モデルのトレーニング問題を,AUCに基づくフェアネス制約のクラスを対象とする最適化問題として定式化する。
フェアネス測定値の異なる実世界のデータに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-23T22:29:08Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Surrogate Assisted Evolutionary Algorithm for Medium Scale Expensive
Multi-Objective Optimisation Problems [4.338938227238059]
目的関数の代理モデルを構築することは、進化アルゴリズム(EA)が現実世界の複雑な最適化問題を解決するのに効果的であることが示されている。
本稿では,50個の決定変数を持つ中規模の高コスト多目的最適化問題に対して,ガウス過程サロゲートモデルによるEA支援手法を提案する。
提案アルゴリズムの有効性を,3つの最先端SAEAと比較し,10,20,50変数のベンチマーク問題に対して検証した。
論文 参考訳(メタデータ) (2020-02-08T12:06:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。