論文の概要: An Efficient Approach for Solving Expensive Constrained Multiobjective Optimization Problems
- arxiv url: http://arxiv.org/abs/2405.13298v1
- Date: Wed, 22 May 2024 02:32:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 01:34:09.727859
- Title: An Efficient Approach for Solving Expensive Constrained Multiobjective Optimization Problems
- Title(参考訳): 制約付き多目的最適化問題に対する効率的な解法
- Authors: Kamrul Hasan Rahi,
- Abstract要約: 効率的な確率的選択に基づく制約付き多目的EAをPSCMOEAと呼ぶ。
a) 評価された解の実現可能性と収束状態に基づく適応探索境界同定スキームのような新しい要素を含む。
ECMOPを模擬する低評価予算を用いて, 幅広い制約付き問題に対して, 数値実験を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: To solve real-world expensive constrained multi-objective optimization problems (ECMOPs), surrogate/approximation models are commonly incorporated in evolutionary algorithms to pre-select promising candidate solutions for evaluation. However, the performance of existing approaches are highly dependent on the relative position of unconstrained and constrained Pareto fronts (UPF and CPF, respectively). In addition, the uncertainty information of surrogate models is often ignored, which can misguide the search. To mitigate these key issues (among others), an efficient probabilistic selection based constrained multi-objective EA is proposed, referred to as PSCMOEA. It comprises novel elements such as (a) an adaptive search bound identification scheme based on the feasibility and convergence status of evaluated solutions (b) a probabilistic selection method backed by theoretical formulations of model mean and uncertainties to conduct search in the predicted space to identify promising solutions (c) an efficient single infill sampling approach to balance feasibility, convergence and diversity across different stages of the search and (d) an adaptive switch to unconstrained search based on certain search conditions. Numerical experiments are conducted on an extensive range of challenging constrained problems using low evaluation budgets to simulate ECMOPs. The performance of PSCMOEA is benchmarked against five competitive state-of-the-art algorithms, to demonstrate its competitive and consistent performance.
- Abstract(参考訳): 実世界の高価な制約付き多目的最適化問題 (ECMOP) を解決するために、サロゲート/近似モデルが進化的アルゴリズムに一般的に組み込まれ、予測可能な候補解を事前に選択して評価する。
しかし、既存のアプローチの性能は、制約のないパレートフロント(UPFとCPF)の相対的な位置に依存する。
さらに、代理モデルの不確実性情報は無視されることが多く、探索を誤る可能性がある。
これらの重要な問題を緩和するために、効率的な確率的選択に基づく制約付き多目的EA(PSCMOEA)を提案する。
斬新な要素を包含する。
(a)評価解の実現可能性と収束状況に基づく適応探索境界識別方式
b)モデル平均と不確実性の理論的定式化を背景とした確率的選択法
(c)検索の異なる段階における実現可能性、収束性、多様性のバランスをとるための効率的な単一埋入サンプリングアプローチ
(d)特定の探索条件に基づく非制約探索への適応スイッチ。
ECMOPを模擬する低評価予算を用いて, 幅広い制約付き問題に対して, 数値実験を行った。
PSCMOEAのパフォーマンスは、競争力と一貫性のあるパフォーマンスを示すために、5つの競争力のある最先端のアルゴリズムに対してベンチマークされる。
関連論文リスト
- End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
高価な関数評価を用いたマルチオブジェクト(MO)ブラックボックス最適化の問題点を考察する。
UeMOと呼ばれる新しい不確実性対応検索フレームワークを提案し、評価のための入力シーケンスを効率的に選択する。
論文 参考訳(メタデータ) (2022-04-12T16:50:48Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
エネルギーシステムの最適化問題は、強い非線形系の挙動と複数の競合する目的のために複雑である。
場合によっては、提案された最適解は、物理的性質や安全クリティカルな操作条件に関連する明示的な入力制約に従う必要がある。
本稿では,ブラックボックス問題に対する制約付き多目的最適化のためのツリーアンサンブルを用いた新しいデータ駆動戦略を提案する。
論文 参考訳(メタデータ) (2021-11-04T20:18:55Z) - Evolutionary Optimization of High-Coverage Budgeted Classifiers [1.7767466724342065]
予算付き多機能分類器(MSC)プロセスは、部分的特徴取得および評価ステップのシーケンスを通じて入力される。
本稿では,不確定な予測のための端末拒否オプションを組み込んだ問題固有MSCを提案する。
アルゴリズムの設計は、一意化による集約性能の概念を尊重しながら効率を重視している。
論文 参考訳(メタデータ) (2021-10-25T16:03:07Z) - Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables [11.310502327308575]
独立して通常は分散しているコンポーネントのシナリオについて研究する。
期待されるコストとその分散をトレードオフする問題を多目的に定式化する。
また,本手法は,木に散らばった最小限の問題に対して最適解の集合を計算するためにも有効であることを示す。
論文 参考訳(メタデータ) (2021-09-13T09:24:23Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
提案アルゴリズムは,実モデルのモデルによって定義される一連の代理問題の解法に基づく。
また,最適化ランドスケープのための最適なサロゲートモデルとナビゲーション戦略のメタ検索を行う。
論文 参考訳(メタデータ) (2021-03-19T11:18:03Z) - Automatic selection of basis-adaptive sparse polynomial chaos expansions
for engineering applications [0.0]
スパースカオス展開のための3つの最新技術に基づく基礎適応的アプローチについて述べる。
我々は,大規模な計算モデルに対して,大域的近似精度の観点から広範なベンチマークを行う。
クロスバリデーションエラーによって導かれる新しい解法と基底適応性選択スキームを導入する。
論文 参考訳(メタデータ) (2020-09-10T12:13:57Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。