Super-resolution and super-sensitivity of quantum LiDAR with multi-photonic state and binary outcome photon counting measurement
- URL: http://arxiv.org/abs/2309.12076v2
- Date: Wed, 3 Apr 2024 11:27:55 GMT
- Title: Super-resolution and super-sensitivity of quantum LiDAR with multi-photonic state and binary outcome photon counting measurement
- Authors: Priyanka Sharma, Manoj K. Mishra, Devendra Kumar Mishra,
- Abstract summary: We are using multi-photonic state (MPS), superposition of four coherent states as the input state and binary outcome parity photon counting measurement.
We found enhancement in resolution and phase sensitivity in comparison to the coherent state and even coherent superposition state based quantum LiDAR.
- Score: 2.2120851074630177
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Here we are investigating the enhancement in phase sensitivity and resolution in Mach-Zehnder interferometer (MZI) based quantum LiDAR. We are using multi-photonic state (MPS), superposition of four coherent states [1], as the input state and binary outcome parity photon counting measurement and binary outcome zero-nonzero photon counting measurement as the measurement schemes. We thoroughly investigate the results in lossless as well as in lossy cases. We found enhancement in resolution and phase sensitivity in comparison to the coherent state and even coherent superposition state (ECSS) based quantum LiDAR. Our analysis shows that MPS may be an alternative nonclassical resource in the field of quantum imaging and quantum sensing technologies, like in quantum LiDAR.
Related papers
- Pushing the Boundaries: Interferometric Mass Photometry at the Quantum Limit of Sensitivity [0.7864304771129751]
In comparison to the conventional confocal interferometric scattering (iSCAT) approach, our setup adds a second arm to form a Michelson interferometer.
We evaluate the quantum Cram'er-Rao bound (QCRB) for different quantum states, including single-mode coherent states, multi-frequency coherent states, and phase-averaged coherent states.
arXiv Detail & Related papers (2024-10-25T09:21:01Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Experimental benchmarking of quantum state overlap estimation strategies with photonic systems [17.062416865186307]
We compare four strategies for overlap estimation using photonic quantum systems.
We encode the quantum states on the polarization and path degrees of freedom of single photons.
We propose an adaptive strategy with optimized precision in full-range overlap estimation.
arXiv Detail & Related papers (2024-06-10T21:33:10Z) - On-chip quantum interference between independent lithium niobate-on-insulator photon-pair sources [35.310629519009204]
A lithium niobate-on-insulator (LNOI) integrated photonic circuit generates a two-photon path-entangled state, and a programmable interferometer for quantum interference.
We generate entangled photons with $sim2.3times108$ pairs/s/mW brightness and perform quantum interference experiments on the chip with $96.8pm3.6%$ visibility.
Our results provide a path towards large-scale integrated quantum photonics including efficient photon-pair generation and programmable circuits for applications such as boson sampling and quantum communications.
arXiv Detail & Related papers (2024-04-12T10:24:43Z) - Photonic quantum metrology with variational quantum optical
non-linearities [0.0]
Photonic quantum metrology harnesses quantum states of light to measure unknown parameters beyond classical precision limits.
Current protocols suffer from two severe limitations that preclude their scalability.
Here, we develop a deterministic protocol combining quantum optical non-linearities and variational quantum algorithms.
arXiv Detail & Related papers (2023-09-18T14:57:44Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Experimental Multi-state Quantum Discrimination in the Frequency Domain
with Quantum Dot Light [40.96261204117952]
In this work, we present the experimental realization of a protocol employing a time-multiplexing strategy to optimally discriminate among eight non-orthogonal states.
The experiment was built on a custom-designed bulk optics analyser setup and single photons generated by a nearly deterministic solid-state source.
Our work paves the way for more complex applications and delivers a novel approach towards high-dimensional quantum encoding and decoding operations.
arXiv Detail & Related papers (2022-09-17T12:59:09Z) - Quantifying n-photon indistinguishability with a cyclic integrated
interferometer [40.24757332810004]
We report on a universal method to measure the genuine indistinguishability of n-photons.
Our approach relies on a low-depth cyclic multiport interferometer with N = 2n modes.
We experimentally demonstrate this technique for a 8-mode integrated interferometer fabricated using femtosecond laser micromachining.
arXiv Detail & Related papers (2022-01-31T16:30:52Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z) - Transmission Estimation at the Cram\'er-Rao Bound for Squeezed States of
Light in the Presence of Loss and Imperfect Detection [0.0]
We consider the use of quantum states of light with a large number of photons, namely the bright single-mode and two-mode squeezed states.
We show that, in the limit of large squeezing, these states approach the maximum possible quantum Fisher information per photon for transmission estimation.
arXiv Detail & Related papers (2020-08-31T15:58:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.