論文の概要: Exploiting CLIP-based Multi-modal Approach for Artwork Classification
and Retrieval
- arxiv url: http://arxiv.org/abs/2309.12110v1
- Date: Thu, 21 Sep 2023 14:29:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-22 14:57:39.467091
- Title: Exploiting CLIP-based Multi-modal Approach for Artwork Classification
and Retrieval
- Title(参考訳): アートワーク分類と検索のためのCLIPに基づくマルチモーダルアプローチ
- Authors: Alberto Baldrati, Marco Bertini, Tiberio Uricchio, and Alberto Del
Bimbo
- Abstract要約: 我々は、Web上の公開リソースからクロールされたアート画像のデータセットであるNoisyArtデータセットに対して、徹底的な実験を行う。
このようなデータセット上でCLIPは、(ゼロショット)分類に関する印象的な結果と、アート・トゥ・アートワークと記述・トゥ・アートドメインの両方において有望な結果を達成する。
- 参考スコア(独自算出の注目度): 29.419743866789187
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Given the recent advances in multimodal image pretraining where visual models
trained with semantically dense textual supervision tend to have better
generalization capabilities than those trained using categorical attributes or
through unsupervised techniques, in this work we investigate how recent CLIP
model can be applied in several tasks in artwork domain. We perform exhaustive
experiments on the NoisyArt dataset which is a dataset of artwork images
crawled from public resources on the web. On such dataset CLIP achieves
impressive results on (zero-shot) classification and promising results in both
artwork-to-artwork and description-to-artwork domain.
- Abstract(参考訳): 近年のマルチモーダル画像事前学習において,意味的密接なテキスト管理によって訓練された視覚モデルは,分類的属性を用いた訓練や教師なし手法による訓練よりも,より優れた一般化能力を有する傾向にある。
web上の公開リソースからクロールされたアートワークイメージのデータセットであるノイズアートデータセットについて,徹底的な実験を行う。
このようなデータセットでは、クリップは(ゼロショットの)分類で印象的な結果を達成し、アートワークと説明からアートワークの領域の両方で有望な結果が得られる。
関連論文リスト
- Grounding Descriptions in Images informs Zero-Shot Visual Recognition [47.66166611138081]
我々は,表現を細かなレベルと粗いレベルの両方で同時に調整することを目的とした,新しい事前学習戦略であるGRAINを提案する。
我々は,現在の最先端技術と比較して,モデルのゼロショット性能の向上を実証する。
論文 参考訳(メタデータ) (2024-12-05T18:52:00Z) - Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
画像分類性能を高めるための一般的な戦略は、T2Iモデルによって生成された合成画像でトレーニングセットを増強することである。
本研究では,既存のデータ拡張技術の欠点について検討する。
Diff-Mixと呼ばれる革新的なクラス間データ拡張手法を導入する。
論文 参考訳(メタデータ) (2024-03-28T17:23:45Z) - Understanding Transferable Representation Learning and Zero-shot Transfer in CLIP [84.90129481336659]
CLIPの基盤となるトランスファーブル表現学習について検討し、異なるモダリティの特徴の整合性を実証する。
そこで本研究では,ベンチマークデータセット上でのCLIPや他の最先端手法よりも優れた性能を実現するCLIP型アプローチを提案する。
論文 参考訳(メタデータ) (2023-10-02T06:41:30Z) - Composed Image Retrieval using Contrastive Learning and Task-oriented
CLIP-based Features [32.138956674478116]
参照画像と相対キャプションからなるクエリが与えられた場合、Composeed Image Retrievalの目的は、参照画像と視覚的に類似した画像を取得することである。
検討されたタスクに対処するために、OpenAI CLIPモデルの機能を使用します。
我々は、バイモーダル情報を統合することで、画像テキスト機能を組み合わせることを学ぶコンビネータネットワークを訓練する。
論文 参考訳(メタデータ) (2023-08-22T15:03:16Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - StyLIP: Multi-Scale Style-Conditioned Prompt Learning for CLIP-based
Domain Generalization [26.08922351077744]
StyLIPは、ドメイン間のCLIPの分類性能を高める、ドメインの一般化のための新しいアプローチである。
提案手法は,CLIPの事前学習された視覚エンコーダに埋め込まれた視覚的スタイルとコンテンツ情報を切り離すことを目的とした,ドメインに依存しないプロンプト学習戦略に焦点をあてる。
論文 参考訳(メタデータ) (2023-02-18T07:36:16Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
非コントラスト型言語画像事前学習(nCLIP)の有効性について検討する。
我々は、CLIPとnCLIPを組み合わせたマルチタスクフレームワークであるxCLIPを紹介し、nCLIPが機能セマンティクスの強化にCLIPを支援することを示す。
論文 参考訳(メタデータ) (2022-10-17T17:57:46Z) - CLIP-Art: Contrastive Pre-training for Fine-Grained Art Classification [7.6146285961466]
私たちは、CLIP(Contrastive Language- Image Pre-Training)を使用して、さまざまなアートイメージとテキスト記述ペアでニューラルネットワークをトレーニングする最初の方法の1つです。
本手法は,インスタンス検索と細粒度アートワーク属性認識という2つの課題を解決することを目的としている。
このベンチマークでは、自己スーパービジョンのみを使用して、競争結果を達成しました。
論文 参考訳(メタデータ) (2022-04-29T17:17:24Z) - Multimodal Contrastive Training for Visual Representation Learning [45.94662252627284]
マルチモーダルデータを取り入れた視覚表現の学習手法を開発した。
本手法は,各モダリティおよびセマンティクス情報内の本質的なデータ特性をクロスモーダル相関から同時に利用する。
統合フレームワークにマルチモーダルトレーニングを組み込むことで,より強力で汎用的な視覚的特徴を学習することができる。
論文 参考訳(メタデータ) (2021-04-26T19:23:36Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Multiple instance learning on deep features for weakly supervised object
detection with extreme domain shifts [1.9336815376402716]
近年,画像レベルのアノテーションのみを用いたオブジェクト検出 (WSOD) が注目されている。
事前学習した深部特徴に応用した単純な複数インスタンスアプローチは、非写真データセットに優れた性能をもたらすことを示す。
論文 参考訳(メタデータ) (2020-08-03T20:36:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。