論文の概要: A Toolchain for Privacy-Preserving Distributed Aggregation on Edge-Devices
- arxiv url: http://arxiv.org/abs/2309.12483v1
- Date: Thu, 21 Sep 2023 20:55:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 04:01:03.348986
- Title: A Toolchain for Privacy-Preserving Distributed Aggregation on Edge-Devices
- Title(参考訳): エッジデバイス上での分散アグリゲーションのプライバシ保護のためのツールチェーン
- Authors: Johannes Liebenow, Timothy Imort, Yannick Fuchs, Marcel Heisel, Nadja Käding, Jan Rupp, Esfandiar Mohammadi,
- Abstract要約: 新型コロナウイルス(COVID-19)のパンデミックを受けて頻繁に訪れる環境など、重要な洞察は、スマートフォンのようなエッジデバイスにまたがる機密データを分析することで得られることが多い。
エッジデバイスの限られたリソースを考慮に入れ,ローカルデータの分散したプライバシ保護アグリゲーションのためのツールチェーンを提案する。
- 参考スコア(独自算出の注目度): 0.5216865930622505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Valuable insights, such as frequently visited environments in the wake of the COVID-19 pandemic, can oftentimes only be gained by analyzing sensitive data spread across edge-devices like smartphones. To facilitate such an analysis, we present a toolchain for a distributed, privacy-preserving aggregation of local data by taking the limited resources of edge-devices into account. The distributed aggregation is based on secure summation and simultaneously satisfies the notion of differential privacy. In this way, other parties can neither learn the sensitive data of single clients nor a single client's influence on the final result. We perform an evaluation of the power consumption, the running time and the bandwidth overhead on real as well as simulated devices and demonstrate the flexibility of our toolchain by presenting an extension of the summation of histograms to distributed clustering.
- Abstract(参考訳): 新型コロナウイルス(COVID-19)のパンデミックを受けて頻繁に訪れる環境など、重要な洞察は、スマートフォンのようなエッジデバイスにまたがる機密データを分析することで得られることが多い。
このような分析を容易にするために、エッジデバイスの限られたリソースを考慮に入れ、ローカルデータの分散したプライバシ保護アグリゲーションのためのツールチェーンを提案する。
分散アグリゲーションはセキュアな和に基づいており、同時に差分プライバシーの概念を満たす。
このようにして、他のパーティは、単一のクライアントの機密データや、最終的な結果に対する単一のクライアントの影響を学ぶことができません。
我々は,実環境における消費電力,走行時間,および帯域幅のオーバーヘッドの評価を行い,ヒストグラムの総和を分散クラスタリングに拡張することにより,ツールチェーンの柔軟性を実証する。
関連論文リスト
- DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning using Packed Secret Sharing [51.336015600778396]
フェデレーテッド・ラーニング(FL)は最近、産業とアカデミックの両方で多くの注目を集めています。
FLでは、機械学習モデルは、複数のラウンドにまたがって委員会に配置されたさまざまなエンドユーザのデータを使用して訓練される。
このようなデータは、しばしばセンシティブであるため、FLの主な課題は、モデルの実用性を維持しながらプライバシを提供することである。
論文 参考訳(メタデータ) (2024-10-21T16:25:14Z) - Segmented Private Data Aggregation in the Multi-message Shuffle Model [6.436165623346879]
我々は、差分プライバシーのマルチメッセージシャッフルモデルにおいて、セグメント化されたプライベートデータアグリゲーションの研究を開拓した。
当社のフレームワークでは,ユーザに対するフレキシブルなプライバシ保護と,アグリゲーションサーバのための拡張ユーティリティを導入している。
提案手法は,既存手法と比較して推定誤差を約50%削減する。
論文 参考訳(メタデータ) (2024-07-29T01:46:44Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Ungeneralizable Examples [70.76487163068109]
学習不能なデータを作成するための現在のアプローチには、小さくて特殊なノイズが組み込まれている。
学習不能データの概念を条件付きデータ学習に拡張し、textbfUntextbf Generalizable textbfExamples (UGEs)を導入する。
UGEは認証されたユーザに対して学習性を示しながら、潜在的なハッカーに対する非学習性を維持している。
論文 参考訳(メタデータ) (2024-04-22T09:29:14Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
プライバシー保護方式でユーザを包括的に表現するために,ネットワーク横断型ソーシャルユーザ埋め込みフレームワークDP-CroSUEを提案する。
特に、各異種ソーシャルネットワークに対して、異種データ型に対するプライバシー期待の変化を捉えるために、まずハイブリッドな差分プライバシーの概念を導入する。
ユーザ埋め込みをさらに強化するため、新しいネットワーク間GCN埋め込みモデルは、それらの整列したユーザを介して、ネットワーク間で知識を伝達するように設計されている。
論文 参考訳(メタデータ) (2022-09-04T06:22:37Z) - Towards Sparse Federated Analytics: Location Heatmaps under Distributed
Differential Privacy with Secure Aggregation [15.569382274788234]
我々は、数百万のユーザデバイスから分散化されたデータにまたがって、位置情報のヒートマップをプライベートに生成するスケーラブルなアルゴリズムを設計する。
データの正確性を維持しつつ、ユーザのデバイス上でのリソース消費を最小限に抑えながら、データがサービスプロバイダに表示される前に、差分プライバシを確保することを目的としている。
論文 参考訳(メタデータ) (2021-11-03T17:19:05Z) - The Distributed Discrete Gaussian Mechanism for Federated Learning with
Secure Aggregation [28.75998313625891]
本稿では,データを適切に識別し,セキュアアグリゲーションを行う前に離散ガウス雑音を付加する総合的なエンドツーエンドシステムを提案する。
私達の理論的保証はコミュニケーション、プライバシーおよび正確さ間の複雑な緊張を強調します。
論文 参考訳(メタデータ) (2021-02-12T08:20:18Z) - Generating private data with user customization [9.415164800448853]
モバイルデバイスは大量のデータを生成、保存し、機械学習モデルを強化することができる。
しかし、このデータには、データのリリースを防止するデータ所有者特有のプライベート情報が含まれている可能性がある。
有用な情報を保持しつつ、ユーザ固有のプライベート情報とデータとの相関を小さくしたい。
論文 参考訳(メタデータ) (2020-12-02T19:13:58Z) - Deep Directed Information-Based Learning for Privacy-Preserving Smart
Meter Data Release [30.409342804445306]
本稿では,時系列データとスマートメータ(SM)電力消費測定の文脈における問題点について検討する。
我々は、考慮された設定において、より意味のあるプライバシーの尺度として、指向情報(DI)を導入します。
最悪のシナリオにおけるSMs測定による実世界のデータセットに関する実証的研究は、プライバシとユーティリティの既存のトレードオフを示している。
論文 参考訳(メタデータ) (2020-11-20T13:41:11Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。