論文の概要: An Intelligent Approach to Detecting Novel Fault Classes for Centrifugal
Pumps Based on Deep CNNs and Unsupervised Methods
- arxiv url: http://arxiv.org/abs/2309.12765v1
- Date: Fri, 22 Sep 2023 10:10:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-25 14:59:46.408755
- Title: An Intelligent Approach to Detecting Novel Fault Classes for Centrifugal
Pumps Based on Deep CNNs and Unsupervised Methods
- Title(参考訳): 深部CNNと教師なし手法に基づく遠心ポンプの新しい故障クラス検出のためのインテリジェントアプローチ
- Authors: Mahdi Abdollah Chalaki, Daniyal Maroufi, Mahdi Robati, Mohammad Javad
Karimi, Ali Sadighi
- Abstract要約: 本稿では,システム障害の部分的知識を仮定し,それに対応するデータを用いて畳み込みニューラルネットワークを訓練する。
次に、新しい断層を検出するために、t-SNE法とクラスタリング法の組み合わせを用いる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite the recent success in data-driven fault diagnosis of rotating
machines, there are still remaining challenges in this field. Among the issues
to be addressed, is the lack of information about variety of faults the system
may encounter in the field. In this paper, we assume a partial knowledge of the
system faults and use the corresponding data to train a convolutional neural
network. A combination of t-SNE method and clustering techniques is then
employed to detect novel faults. Upon detection, the network is augmented using
the new data. Finally, a test setup is used to validate this two-stage
methodology on a centrifugal pump and experimental results show high accuracy
in detecting novel faults.
- Abstract(参考訳): 近年、回転機械のデータ駆動型故障診断の成功にもかかわらず、この分野にはまだ課題が残っている。
対処すべき問題のひとつは、システムが現場で遭遇する可能性のあるさまざまな障害に関する情報の欠如だ。
本稿では,システム障害の部分的知識を仮定し,それに対応するデータを用いて畳み込みニューラルネットワークを訓練する。
t-SNE法とクラスタリング法を組み合わせて新しい断層を検出する。
検知すると、ネットワークは新しいデータを使って拡張される。
最後に, この2段法を遠心ポンプで検証するために試験装置を用い, 実験結果から新しい故障の検出精度が向上した。
関連論文リスト
- A Self-Supervised Task for Fault Detection in Satellite Multivariate Time Series [45.31237646796715]
この研究は、複雑な分布と高次元分布をモデル化する能力で有名な物理インフォームドリアルNVPニューラルネットワークを活用する新しいアプローチを提案する。
実験には、セルフスーパービジョンによる事前トレーニング、マルチタスク学習、スタンドアロンのセルフ教師付きトレーニングなど、さまざまな構成が含まれている。
結果は、すべての設定で大幅にパフォーマンスが向上したことを示している。
論文 参考訳(メタデータ) (2024-07-03T07:19:41Z) - DeepHYDRA: Resource-Efficient Time-Series Anomaly Detection in Dynamically-Configured Systems [3.44012349879073]
我々はDeepHYDRA(Deep Hybrid DBSCAN/reduction-based Anomaly Detection)を提案する。
DBSCANと学習ベースの異常検出を組み合わせる。
大規模なデータセットと複雑なデータセットの両方において、異なるタイプの異常を確実に検出できることが示されている。
論文 参考訳(メタデータ) (2024-05-13T13:47:15Z) - Image-based Novel Fault Detection with Deep Learning Classifiers using Hierarchical Labels [8.365583064409371]
本研究では、ディープニューラルネットワークに基づく故障分類器の未知の故障検出機能について考察する。
本稿では, 故障検出性能の未知化のために, 故障分類に関するラベルをいかに利用することができるかを示す方法論を提案する。
論文 参考訳(メタデータ) (2024-03-26T17:22:29Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Transfer Learning for Fault Diagnosis of Transmission Lines [55.971052290285485]
事前学習されたLeNet-5畳み込みニューラルネットワークに基づく新しい伝達学習フレームワークを提案する。
ソースニューラルネットワークから知識を転送して、異種ターゲットデータセットを予測することで、異なる伝送ラインの長さとインピーダンスの障害を診断することができる。
論文 参考訳(メタデータ) (2022-01-20T06:36:35Z) - Feature Encoding with AutoEncoders for Weakly-supervised Anomaly
Detection [46.76220474310698]
弱教師付き異常検出は、ラベル付きデータと豊富なラベル付きデータから異常検出を学習することを目的としている。
最近の研究は、正常なサンプルと異常なサンプルを特徴空間内の異なる領域に識別的にマッピングしたり、異なる分布に適合させたりすることで、異常検出のためのディープニューラルネットワークを構築している。
本稿では,入力データを,異常検出に使用可能な,より意味のある表現に変換するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-22T16:23:05Z) - Frequency-based Multi Task learning With Attention Mechanism for Fault
Detection In Power Systems [6.4332733596587115]
本稿では,障害検出のための新しいディープラーニングベースのアプローチを導入し,実際のデータセット,すなわち部分放電検出タスクのためのKaggleプラットフォーム上でテストする。
提案手法では,時系列の特徴を抽出するためのアテンション機構を備えたLong-Short Term Memoryアーキテクチャを採用し,信号の周波数情報を利用した1D-Convolutional Neural Network構造を用いて予測を行う。
論文 参考訳(メタデータ) (2020-09-15T02:01:47Z) - Residual Generation Using Physically-Based Grey-Box Recurrent Neural
Networks For Engine Fault Diagnosis [1.0152838128195467]
物理モデルと利用可能なトレーニングデータを組み合わせたハイブリッド故障診断手法は有望な結果を示した。
システムモデルの二部グラフ表現を用いて自動残差設計を行い、グレーボックス再帰ニューラルネットワークを設計する。
内燃機関テストベンチからのデータは、機械学習とモデルに基づく故障診断技術を組み合わせる可能性を示すために使用される。
論文 参考訳(メタデータ) (2020-08-11T11:59:48Z) - A cognitive based Intrusion detection system [0.0]
侵入検知は、コンピュータネットワークのセキュリティを提供する重要なメカニズムの1つである。
本稿では,Deep Neural Network Ans Supportctor Machine Classifierに基づく新しい手法を提案する。
提案手法は, 侵入検知に類似した手法により, より精度良く攻撃を予測できる。
論文 参考訳(メタデータ) (2020-05-19T13:30:30Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。