論文の概要: Image-based Novel Fault Detection with Deep Learning Classifiers using Hierarchical Labels
- arxiv url: http://arxiv.org/abs/2403.17891v1
- Date: Tue, 26 Mar 2024 17:22:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 14:18:09.961784
- Title: Image-based Novel Fault Detection with Deep Learning Classifiers using Hierarchical Labels
- Title(参考訳): 階層ラベルを用いた深層学習分類器による画像に基づく新しい断層検出
- Authors: Nurettin Sergin, Jiayu Huang, Tzyy-Shuh Chang, Hao Yan,
- Abstract要約: 本研究では、ディープニューラルネットワークに基づく故障分類器の未知の故障検出機能について考察する。
本稿では, 故障検出性能の未知化のために, 故障分類に関するラベルをいかに利用することができるかを示す方法論を提案する。
- 参考スコア(独自算出の注目度): 8.365583064409371
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One important characteristic of modern fault classification systems is the ability to flag the system when faced with previously unseen fault types. This work considers the unknown fault detection capabilities of deep neural network-based fault classifiers. Specifically, we propose a methodology on how, when available, labels regarding the fault taxonomy can be used to increase unknown fault detection performance without sacrificing model performance. To achieve this, we propose to utilize soft label techniques to improve the state-of-the-art deep novel fault detection techniques during the training process and novel hierarchically consistent detection statistics for online novel fault detection. Finally, we demonstrated increased detection performance on novel fault detection in inspection images from the hot steel rolling process, with results well replicated across multiple scenarios and baseline detection methods.
- Abstract(参考訳): 現代の断層分類システムの重要な特徴の1つは、以前に見つからなかった断層タイプに直面した時にシステムにフラグを付ける能力である。
本研究では、ディープニューラルネットワークに基づく故障分類器の未知の故障検出機能について考察する。
具体的には,モデルの性能を犠牲にすることなく,断層分類に関するラベルを未知の断層検出性能を高める方法を提案する。
そこで本研究では,学習過程における最先端の深層断層検出技術の改善と,オンラインの新たな断層検出のための階層的一貫した新しい検出統計量を実現するために,ソフトラベル技術を活用することを提案する。
最後に, 熱間圧延工程の検査画像において, 新たな欠陥検出性能が向上し, 複数のシナリオやベースライン検出方法によく再現できることを示した。
関連論文リスト
- Unsupervised Novelty Detection Methods Benchmarking with Wavelet Decomposition [0.22369578015657962]
新規性検出のための教師なし機械学習アルゴリズムを比較する。
新しいデータセットは、特定の周波数で振動するアクチュエータから収集され、アルゴリズムをベンチマークし、フレームワークを評価する。
本研究は,実世界の新規性検出アプリケーションにおける教師なし学習技術の適応性と堅牢性に関する貴重な知見を提供する。
論文 参考訳(メタデータ) (2024-09-11T09:31:28Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - An Intelligent Approach to Detecting Novel Fault Classes for Centrifugal
Pumps Based on Deep CNNs and Unsupervised Methods [0.0]
本稿では,システム障害の部分的知識を仮定し,それに対応するデータを用いて畳み込みニューラルネットワークを訓練する。
次に、新しい断層を検出するために、t-SNE法とクラスタリング法の組み合わせを用いる。
論文 参考訳(メタデータ) (2023-09-22T10:10:30Z) - Investigation of Different Calibration Methods for Deep Speaker
Embedding based Verification Systems [66.61691401921296]
本稿では, ディープスピーカ埋込抽出器のスコアキャリブレーション法について検討する。
この研究のさらなる焦点は、スコア正規化がシステムの校正性能に与える影響を推定することである。
論文 参考訳(メタデータ) (2022-03-28T21:22:22Z) - Abuse and Fraud Detection in Streaming Services Using Heuristic-Aware
Machine Learning [0.45880283710344055]
本研究は,ユーザのストリーミング動作をモデル化することで,ストリーミングサービスに対する不正・悪用検出フレームワークを提案する。
本研究では,半教師付きアプローチと,異常検出のための教師付きアプローチについて検討する。
私たちの知る限りでは、実世界のストリーミングサービスにおいて、不正行為の検出と不正検出に機械学習を使った最初の論文である。
論文 参考訳(メタデータ) (2022-03-04T03:57:58Z) - Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection [97.93062818228015]
本稿では,再建に基づく機能を,新たな自己監督型予測アーキテクチャビルディングブロックに統合することを提案する。
我々のブロックは、受容領域におけるマスク領域に対する再構成誤差を最小限に抑える損失を備える。
画像やビデオの異常検出のための最先端フレームワークに組み込むことで,ブロックの汎用性を実証する。
論文 参考訳(メタデータ) (2021-11-17T13:30:31Z) - Zero-sample surface defect detection and classification based on
semantic feedback neural network [13.796631421521765]
本論文では,複数角度からの画像タグ埋め込みにおける予測誤差を適応的に低減するアンサンブル協調学習アルゴリズムを提案する。
産業分野におけるゼロショットデータセットとシリンダーライナーデータセットを用いた各種実験により,競争結果が得られた。
論文 参考訳(メタデータ) (2021-06-15T08:26:36Z) - Residual Generation Using Physically-Based Grey-Box Recurrent Neural
Networks For Engine Fault Diagnosis [1.0152838128195467]
物理モデルと利用可能なトレーニングデータを組み合わせたハイブリッド故障診断手法は有望な結果を示した。
システムモデルの二部グラフ表現を用いて自動残差設計を行い、グレーボックス再帰ニューラルネットワークを設計する。
内燃機関テストベンチからのデータは、機械学習とモデルに基づく故障診断技術を組み合わせる可能性を示すために使用される。
論文 参考訳(メタデータ) (2020-08-11T11:59:48Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
ディープラーニングモデルは、トロイの木馬攻撃に対して脆弱で、攻撃者はトレーニング中にバックドアをインストールして、結果のモデルが小さなトリガーパッチで汚染されたサンプルを誤識別させる。
本稿では,ラベル数と計算複雑性が一致しない新たなトリガリバースエンジニアリング手法を提案する。
実験では,提案手法が純モデルからトロイの木馬モデルを分離する際の完全なスコアを達成できることが観察された。
論文 参考訳(メタデータ) (2020-06-10T04:12:53Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。