Ensemble Differential Evolution with Simulation-Based Hybridization and
Self-Adaptation for Inventory Management Under Uncertainty
- URL: http://arxiv.org/abs/2309.12852v3
- Date: Fri, 13 Oct 2023 04:57:59 GMT
- Title: Ensemble Differential Evolution with Simulation-Based Hybridization and
Self-Adaptation for Inventory Management Under Uncertainty
- Authors: Sarit Maitra, Vivek Mishra, Sukanya Kundu
- Abstract summary: This study proposes an Ensemble Differential Evolution with Simula-tion-Based Hybridization and Self-Adaptation (EDESH-SA) approach for inven-tory management (IM) under uncertainty.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study proposes an Ensemble Differential Evolution with Simula-tion-Based
Hybridization and Self-Adaptation (EDESH-SA) approach for inven-tory management
(IM) under uncertainty. In this study, DE with multiple runs is combined with a
simulation-based hybridization method that includes a self-adaptive mechanism
that dynamically alters mutation and crossover rates based on the success or
failure of each iteration. Due to its adaptability, the algorithm is able to
handle the complexity and uncertainty present in IM. Utilizing Monte Carlo
Simulation (MCS), the continuous review (CR) inventory strategy is ex-amined
while accounting for stochasticity and various demand scenarios. This
simulation-based approach enables a realistic assessment of the proposed
algo-rithm's applicability in resolving the challenges faced by IM in practical
settings. The empirical findings demonstrate the potential of the proposed
method to im-prove the financial performance of IM and optimize large search
spaces. The study makes use of performance testing with the Ackley function and
Sensitivity Analysis with Perturbations to investigate how changes in variables
affect the objective value. This analysis provides valuable insights into the
behavior and robustness of the algorithm.
Related papers
- Cooperative Resilience in Artificial Intelligence Multiagent Systems [2.0608564715600273]
This paper proposes a clear definition of cooperative resilience' and a methodology for its quantitative measurement.
The results highlight the crucial role of resilience metrics in analyzing how the collective system prepares for, resists, recovers from, sustains well-being, and transforms in the face of disruptions.
arXiv Detail & Related papers (2024-09-20T03:28:48Z) - An Efficient Approach for Solving Expensive Constrained Multiobjective Optimization Problems [0.0]
An efficient probabilistic selection based constrained multi-objective EA is proposed, referred to as PSCMOEA.
It comprises novel elements such as (a) an adaptive search bound identification scheme based on the feasibility and convergence status of evaluated solutions.
Numerical experiments are conducted on an extensive range of challenging constrained problems using low evaluation budgets to simulate ECMOPs.
arXiv Detail & Related papers (2024-05-22T02:32:58Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Multiple Independent DE Optimizations to Tackle Uncertainty and
Variability in Demand in Inventory Management [0.0]
This study aims to discern the most effective strategy for minimizing inventory costs within the context of uncertain demand patterns.
To find the optimal solution, the study focuses on meta-heuristic approaches and compares multiple algorithms.
arXiv Detail & Related papers (2023-09-22T13:15:02Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - A Multi-objective Evolutionary Algorithm for EEG Inverse Problem [0.0]
We propose a multi-objective approach for the EEG Inverse Problem.
Due to the characteristics of the problem, this alternative included evolutionary strategies to resolve it.
The result is a Multi-objective Evolutionary Algorithm based on Anatomical Restrictions (MOEAAR) to estimate distributed solutions.
arXiv Detail & Related papers (2021-07-21T19:37:27Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
We introduce a novel GP regression to incorporate the subgroup feedback.
Our modified regression has provably lower variance -- and thus a more accurate posterior -- compared to previous approaches.
We execute our algorithm on two disparate social problems.
arXiv Detail & Related papers (2021-07-07T03:57:22Z) - RDMSim: An Exemplar for Evaluation and Comparison of Decision-Making
Techniques for Self-Adaptation [1.846852980615761]
RDMSim enables researchers to evaluate and compare decision-making techniques for self-adaptation.
The focus of the exemplar is on the domain problem related to Remote Data Mirroring.
arXiv Detail & Related papers (2021-05-05T11:03:16Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning to train refinement policies directly from simulation.
The model sizes of these policy architectures are independent of the mesh size and hence scale to arbitrarily large and complex simulations.
arXiv Detail & Related papers (2021-03-01T22:55:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.