Multiple Independent DE Optimizations to Tackle Uncertainty and
Variability in Demand in Inventory Management
- URL: http://arxiv.org/abs/2309.13095v2
- Date: Mon, 9 Oct 2023 13:57:56 GMT
- Title: Multiple Independent DE Optimizations to Tackle Uncertainty and
Variability in Demand in Inventory Management
- Authors: Sarit Maitra, Sukanya Kundu, Vivek Mishra
- Abstract summary: This study aims to discern the most effective strategy for minimizing inventory costs within the context of uncertain demand patterns.
To find the optimal solution, the study focuses on meta-heuristic approaches and compares multiple algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: To determine the effectiveness of metaheuristic Differential Evolution
optimization strategy for inventory management (IM) in the context of
stochastic demand, this empirical study undertakes a thorough investigation.
The primary objective is to discern the most effective strategy for minimizing
inventory costs within the context of uncertain demand patterns. Inventory
costs refer to the expenses associated with holding and managing inventory
within a business. The approach combines a continuous review of IM policies
with a Monte Carlo Simulation (MCS). To find the optimal solution, the study
focuses on meta-heuristic approaches and compares multiple algorithms. The
outcomes reveal that the Differential Evolution (DE) algorithm outperforms its
counterparts in optimizing IM. To fine-tune the parameters, the study employs
the Latin Hypercube Sampling (LHS) statistical method. To determine the final
solution, a method is employed in this study which combines the outcomes of
multiple independent DE optimizations, each initiated with different random
initial conditions. This approach introduces a novel and promising dimension to
the field of inventory management, offering potential enhancements in
performance and cost efficiency, especially in the presence of stochastic
demand patterns.
Related papers
- Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
A recent stream of structured learning approaches has improved the practical state of the art for a range of optimization problems.
The key idea is to exploit the statistical distribution over instances instead of dealing with instances separately.
In this article, we investigate methods that smooth the risk by perturbing the policy, which eases optimization and improves the generalization error.
arXiv Detail & Related papers (2024-07-24T12:00:30Z) - Model-Free Active Exploration in Reinforcement Learning [53.786439742572995]
We study the problem of exploration in Reinforcement Learning and present a novel model-free solution.
Our strategy is able to identify efficient policies faster than state-of-the-art exploration approaches.
arXiv Detail & Related papers (2024-06-30T19:00:49Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - RLEMMO: Evolutionary Multimodal Optimization Assisted By Deep Reinforcement Learning [8.389454219309837]
multimodal optimization problems (MMOP) requires finding all optimal solutions, which is challenging in limited function evaluations.
We propose RLEMMO, a Meta-Black-Box Optimization framework, which maintains a population of solutions and incorporates a reinforcement learning agent.
With a novel reward mechanism that encourages both quality and diversity, RLEMMO can be effectively trained using a policy gradient algorithm.
arXiv Detail & Related papers (2024-04-12T05:02:49Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Optimizing Inventory Routing: A Decision-Focused Learning Approach using
Neural Networks [0.0]
We formulate and propose a decision-focused learning-based approach to solving real-world IRPs.
This approach directly integrates inventory prediction and routing optimization within an end-to-end system potentially ensuring a robust supply chain strategy.
arXiv Detail & Related papers (2023-11-02T04:05:28Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Ensemble Differential Evolution with Simulation-Based Hybridization and
Self-Adaptation for Inventory Management Under Uncertainty [0.0]
This study proposes an Ensemble Differential Evolution with Simula-tion-Based Hybridization and Self-Adaptation (EDESH-SA) approach for inven-tory management (IM) under uncertainty.
arXiv Detail & Related papers (2023-09-22T13:25:58Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
In this paper, we develop a simple yet efficient approach for the problem of comparing uncertain quantities.
We recast inner optimization in the Lagrangian as a learning problem for surrogate approximation, which bypasses apparent intractability.
The proposed light-SD demonstrates superior performance on several representative problems ranging from finance to supply chain management.
arXiv Detail & Related papers (2022-11-14T21:54:31Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
We consider the problem of multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel uncertainty-aware search framework referred to as USeMO to efficiently select the sequence of inputs for evaluation.
arXiv Detail & Related papers (2022-04-12T16:50:48Z) - Math Programming based Reinforcement Learning for Multi-Echelon
Inventory Management [1.9161790404101895]
Reinforcement learning has lead to considerable break-throughs in diverse areas such as robotics, games and many others.
But the application to RL in complex real-world decision making problems remains limited.
These characteristics make the problem considerably harder to solve for existing RL methods that rely on enumeration techniques to solve per step action problems.
We show that a properly selected discretization of the underlying uncertain distribution can yield near optimal actor policy even with very few samples from the underlying uncertainty.
We find that PARL outperforms commonly used base stock by 44.7% and the best performing RL method by up to 12.1% on average
arXiv Detail & Related papers (2021-12-04T01:40:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.