Relating Wigner's Friend Scenarios to Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning
- URL: http://arxiv.org/abs/2309.12987v4
- Date: Wed, 25 Sep 2024 14:13:45 GMT
- Title: Relating Wigner's Friend Scenarios to Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning
- Authors: Yìlè Yīng, Marina Maciel Ansanelli, Andrea Di Biagio, Elie Wolfe, David Schmid, Eric Gama Cavalcanti,
- Abstract summary: We show that the LF no-go theorem poses formidable challenges for the field of causal modeling.
We prove that no nonclassical causal model can explain violations of LF inequalities without violating the No Fine-Tuning principle.
- Score: 0.7421845364041001
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Nonclassical causal modeling was developed in order to explain violations of Bell inequalities while adhering to relativistic causal structure and faithfulness -- that is, avoiding fine-tuned causal explanations. Recently, a no-go theorem that can be viewed as being stronger than Bell's theorem has been derived, based on extensions of the Wigner's friend thought experiment: the Local Friendliness (LF) no-go theorem. Here we show that the LF no-go theorem poses formidable challenges for the field of causal modeling, even when nonclassical and/or cyclic causal explanations are considered. We first recast the LF inequalities, one of the key elements of the LF no-go theorem, as special cases of monogamy relations stemming from a statistical marginal problem. We then further recast LF inequalities as causal compatibility inequalities stemming from a nonclassical causal marginal problem, for a causal structure implied by well-motivated causal-metaphysical assumptions. We find that the LF inequalities emerge from this causal structure even when one allows the latent causes of observed events to admit post-quantum descriptions, such as in a generalized probabilistic theory or in an even more exotic theory. We further prove that no nonclassical causal model can explain violations of LF inequalities without violating the No Fine-Tuning principle. Finally, we note that these obstacles cannot be overcome even if one appeals to cyclic causal models, and we discuss potential directions for further extensions of the causal modeling framework.
Related papers
- Invariant Causal Set Covering Machines [64.86459157191346]
Rule-based models, such as decision trees, appeal to practitioners due to their interpretable nature.
However, the learning algorithms that produce such models are often vulnerable to spurious associations and thus, they are not guaranteed to extract causally-relevant insights.
We propose Invariant Causal Set Covering Machines, an extension of the classical Set Covering Machine algorithm for conjunctions/disjunctions of binary-valued rules that provably avoids spurious associations.
arXiv Detail & Related papers (2023-06-07T20:52:01Z) - Axiomatization of Interventional Probability Distributions [4.02487511510606]
Causal intervention is axiomatized under the rules of do-calculus.
We show that under our axiomatizations, the intervened distributions are Markovian to the defined intervened causal graphs.
We also show that a large class of natural structural causal models satisfy the theory presented here.
arXiv Detail & Related papers (2023-05-08T06:07:42Z) - A Semantics for Counterfactuals in Quantum Causal Models [0.0]
We introduce a formalism for the evaluation of counterfactual queries in the framework of quantum causal models.
We define a suitable extension of Pearl's notion of a 'classical structural causal model'
We show that every classical (probabilistic) structural causal model can be extended to a quantum structural causal model.
arXiv Detail & Related papers (2023-02-23T05:00:14Z) - Active Bayesian Causal Inference [72.70593653185078]
We propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning.
ABCI jointly infers a posterior over causal models and queries of interest.
We show that our approach is more data-efficient than several baselines that only focus on learning the full causal graph.
arXiv Detail & Related papers (2022-06-04T22:38:57Z) - Markov categories, causal theories, and the do-calculus [7.061298918159947]
We give a category-theoretic treatment of causal models that formalizes the syntax for causal reasoning over a directed acyclic graph (DAG)
This framework enables us to define and study important concepts in causal reasoning from an abstract and "purely causal" point of view.
arXiv Detail & Related papers (2022-04-11T01:27:41Z) - Causal Inference Principles for Reasoning about Commonsense Causality [93.19149325083968]
Commonsense causality reasoning aims at identifying plausible causes and effects in natural language descriptions that are deemed reasonable by an average person.
Existing work usually relies on deep language models wholeheartedly, and is potentially susceptible to confounding co-occurrences.
Motivated by classical causal principles, we articulate the central question of CCR and draw parallels between human subjects in observational studies and natural languages.
We propose a novel framework, ROCK, to Reason O(A)bout Commonsense K(C)ausality, which utilizes temporal signals as incidental supervision.
arXiv Detail & Related papers (2022-01-31T06:12:39Z) - A general framework for cyclic and fine-tuned causal models and their
compatibility with space-time [2.0305676256390934]
Causal modelling is a tool for generating causal explanations of observed correlations.
Existing frameworks for quantum causality tend to focus on acyclic causal structures that are not fine-tuned.
Cyclist causal models can be used to model physical processes involving feedback.
Cyclist causal models may also be relevant in exotic solutions of general relativity.
arXiv Detail & Related papers (2021-09-24T18:00:08Z) - A Topological Perspective on Causal Inference [10.965065178451104]
We show that substantive assumption-free causal inference is possible only in a meager set of structural causal models.
Our results show that inductive assumptions sufficient to license valid causal inferences are statistically unverifiable in principle.
An additional benefit of our topological approach is that it easily accommodates SCMs with infinitely many variables.
arXiv Detail & Related papers (2021-07-18T23:09:03Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - Causal Expectation-Maximisation [70.45873402967297]
We show that causal inference is NP-hard even in models characterised by polytree-shaped graphs.
We introduce the causal EM algorithm to reconstruct the uncertainty about the latent variables from data about categorical manifest variables.
We argue that there appears to be an unnoticed limitation to the trending idea that counterfactual bounds can often be computed without knowledge of the structural equations.
arXiv Detail & Related papers (2020-11-04T10:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.