Beyond Traditional Teaching: The Potential of Large Language Models and
Chatbots in Graduate Engineering Education
- URL: http://arxiv.org/abs/2309.13059v2
- Date: Tue, 19 Dec 2023 21:46:23 GMT
- Title: Beyond Traditional Teaching: The Potential of Large Language Models and
Chatbots in Graduate Engineering Education
- Authors: Mahyar Abedi, Ibrahem Alshybani, Muhammad Rubayat Bin Shahadat,
Michael S. Murillo
- Abstract summary: This paper explores the potential integration of large language models (LLMs) and chatbots into graduate engineering education.
We develop a question bank from the course material and assess the bot's ability to provide accurate, insightful responses.
We demonstrate how powerful plugins like Wolfram Alpha for mathematical problem-solving and code interpretation can significantly extend the bot's capabilities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the rapidly evolving landscape of education, digital technologies have
repeatedly disrupted traditional pedagogical methods. This paper explores the
latest of these disruptions: the potential integration of large language models
(LLMs) and chatbots into graduate engineering education. We begin by tracing
historical and technological disruptions to provide context and then introduce
key terms such as machine learning and deep learning and the underlying
mechanisms of recent advancements, namely attention/transformer models and
graphics processing units. The heart of our investigation lies in the
application of an LLM-based chatbot in a graduate fluid mechanics course. We
developed a question bank from the course material and assessed the chatbot's
ability to provide accurate, insightful responses. The results are encouraging,
demonstrating not only the bot's ability to effectively answer complex
questions but also the potential advantages of chatbot usage in the classroom,
such as the promotion of self-paced learning, the provision of instantaneous
feedback, and the reduction of instructors' workload. The study also examines
the transformative effect of intelligent prompting on enhancing the chatbot's
performance. Furthermore, we demonstrate how powerful plugins like Wolfram
Alpha for mathematical problem-solving and code interpretation can
significantly extend the chatbot's capabilities, transforming it into a
comprehensive educational tool. While acknowledging the challenges and ethical
implications surrounding the use of such AI models in education, we advocate
for a balanced approach. The use of LLMs and chatbots in graduate education can
be greatly beneficial but requires ongoing evaluation and adaptation to ensure
ethical and efficient use.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Developing generative AI chatbots conceptual framework for higher education [0.0]
This study aims to comprehend the implications of AIgeneratives on higher education and pinpoint critical elements for their efficacious implementation.
The results demonstrate how much AI chatbots can do to improve student engagement, streamline the educational process, and support administrative and research duties.
But there are also clear difficulties, such as unfavorable student sentiments, doubts about the veracity of material produced by AI, and unease and nervousness with new technologies.
arXiv Detail & Related papers (2024-03-28T10:40:26Z) - The future of generative AI chatbots in higher education [0.0]
This study explores the future implications of generative AI chatbots in higher education institutions (HEIs)
The findings highlight the transformative potential of generative AI chatbots in streamlining administrative tasks, enhancing student learning experiences, and supporting research activities.
However, challenges such as academic integrity concerns, user input understanding, and resource allocation pose significant obstacles to the effective integration of generative AI chatbots in HEIs.
arXiv Detail & Related papers (2024-03-20T10:44:03Z) - History of generative Artificial Intelligence (AI) chatbots: past,
present, and future development [1.6019538204169677]
The study traces key innovations leading to today's advanced conversational agents, such as ChatGPT and Google Bard.
The paper highlights how natural language processing and machine learning have been integrated into modern chatbots for more sophisticated capabilities.
arXiv Detail & Related papers (2024-02-04T05:01:38Z) - Supporting Student Decisions on Learning Recommendations: An LLM-Based
Chatbot with Knowledge Graph Contextualization for Conversational
Explainability and Mentoring [0.0]
We propose an approach to utilize chatbots as mediators of the conversation and sources of limited and controlled generation of explanations.
A group chat approach is developed to connect students with human mentors, either on demand or in cases that exceed the chatbots's pre-defined tasks.
arXiv Detail & Related papers (2024-01-16T17:31:35Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
This project tackles the pressing issue of human trafficking in online C2C marketplaces through advanced Natural Language Processing (NLP) techniques.
We introduce a novel methodology for generating pseudo-labeled datasets with minimal supervision, serving as a rich resource for training state-of-the-art NLP models.
A key contribution is the implementation of an interpretability framework using Integrated Gradients, providing explainable insights crucial for law enforcement.
arXiv Detail & Related papers (2023-11-22T02:45:01Z) - Analysis of the User Perception of Chatbots in Education Using A Partial
Least Squares Structural Equation Modeling Approach [0.0]
Key behavior-related aspects, such as Optimism, Innovativeness, Discomfort, Insecurity, Transparency, Ethics, Interaction, Engagement, and Accuracy, were studied.
Results showed that Optimism and Innovativeness are positively associated with Perceived Ease of Use (PEOU) and Perceived Usefulness (PU)
arXiv Detail & Related papers (2023-11-07T00:44:56Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z) - Few-Shot Bot: Prompt-Based Learning for Dialogue Systems [58.27337673451943]
Learning to converse using only a few examples is a great challenge in conversational AI.
The current best conversational models are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL)
We propose prompt-based few-shot learning which does not require gradient-based fine-tuning but instead uses a few examples as the only source of learning.
arXiv Detail & Related papers (2021-10-15T14:36:45Z) - Actionable Models: Unsupervised Offline Reinforcement Learning of
Robotic Skills [93.12417203541948]
We propose the objective of learning a functional understanding of the environment by learning to reach any goal state in a given dataset.
We find that our method can operate on high-dimensional camera images and learn a variety of skills on real robots that generalize to previously unseen scenes and objects.
arXiv Detail & Related papers (2021-04-15T20:10:11Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
This paper proposes an innovative framework to train chatbots to possess human-like intentions.
Our framework included a guiding robot and an interlocutor model that plays the role of humans.
We examined our framework using three experimental setups and evaluate the guiding robot with four different metrics to demonstrated flexibility and performance advantages.
arXiv Detail & Related papers (2021-03-30T15:24:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.