Developing generative AI chatbots conceptual framework for higher education
- URL: http://arxiv.org/abs/2403.19303v2
- Date: Mon, 13 May 2024 13:33:43 GMT
- Title: Developing generative AI chatbots conceptual framework for higher education
- Authors: Joshua Ebere Chukwuere,
- Abstract summary: This study aims to comprehend the implications of AIgeneratives on higher education and pinpoint critical elements for their efficacious implementation.
The results demonstrate how much AI chatbots can do to improve student engagement, streamline the educational process, and support administrative and research duties.
But there are also clear difficulties, such as unfavorable student sentiments, doubts about the veracity of material produced by AI, and unease and nervousness with new technologies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This research explores the quickly changing field of generative artificial intelligence (GAI) chatbots in higher education, an industry that is undergoing major technological changes. AI chatbots, such as ChatGPT, HuggingChat, and Google Bard, are becoming more and more common in a variety of sectors, including education. Their acceptance is still in its early phases, with a variety of prospects and obstacles. However, their potential in higher education is particularly noteworthy, providing lecturers and students with affordable, individualized support. Creating a comprehensive framework to aid the usage of generative AI chatbots in higher education institutions (HEIs) is the aim of this project. The Generative AI Chatbots Acceptance Model (GAICAM) is the result of this study's synthesis of elements from well-known frameworks, including the TAM, UTAUT2, TPB, and others along with variables like optimism, innovativeness, discomfort, insecurity, and others. Using a research method that encompasses a comprehensive analysis of extant literature from databases such as IEEE, ACM, ScienceDirect, and Google Scholar, the study aims to comprehend the implications of AI Chatbots on higher education and pinpoint critical elements for their efficacious implementation. Peer-reviewed English-language publications published between 2020 and 2023 with a focus on the use of AI chatbots in higher education were the main focus of the search criteria. The results demonstrate how much AI chatbots can do to improve student engagement, streamline the educational process, and support administrative and research duties. But there are also clear difficulties, such as unfavorable student sentiments, doubts about the veracity of material produced by AI, and unease and nervousness with new technologies.
Related papers
- From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC (Massive AI-empowered Course) is a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom.
We conduct preliminary experiments at Tsinghua University, one of China's leading universities.
arXiv Detail & Related papers (2024-09-05T13:22:51Z) - Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions [67.60397632819202]
Building socially-intelligent AI agents (Social-AI) is a multidisciplinary, multimodal research goal.
We identify a set of underlying technical challenges and open questions for researchers across computing communities to advance Social-AI.
arXiv Detail & Related papers (2024-04-17T02:57:42Z) - The future of generative AI chatbots in higher education [0.0]
This study explores the future implications of generative AI chatbots in higher education institutions (HEIs)
The findings highlight the transformative potential of generative AI chatbots in streamlining administrative tasks, enhancing student learning experiences, and supporting research activities.
However, challenges such as academic integrity concerns, user input understanding, and resource allocation pose significant obstacles to the effective integration of generative AI chatbots in HEIs.
arXiv Detail & Related papers (2024-03-20T10:44:03Z) - History of generative Artificial Intelligence (AI) chatbots: past,
present, and future development [1.6019538204169677]
The study traces key innovations leading to today's advanced conversational agents, such as ChatGPT and Google Bard.
The paper highlights how natural language processing and machine learning have been integrated into modern chatbots for more sophisticated capabilities.
arXiv Detail & Related papers (2024-02-04T05:01:38Z) - AI for social science and social science of AI: A Survey [47.5235291525383]
Recent advancements in artificial intelligence have sparked a rethinking of artificial general intelligence possibilities.
The increasing human-like capabilities of AI are also attracting attention in social science research.
arXiv Detail & Related papers (2024-01-22T10:57:09Z) - Analysis of the User Perception of Chatbots in Education Using A Partial
Least Squares Structural Equation Modeling Approach [0.0]
Key behavior-related aspects, such as Optimism, Innovativeness, Discomfort, Insecurity, Transparency, Ethics, Interaction, Engagement, and Accuracy, were studied.
Results showed that Optimism and Innovativeness are positively associated with Perceived Ease of Use (PEOU) and Perceived Usefulness (PU)
arXiv Detail & Related papers (2023-11-07T00:44:56Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Beyond Traditional Teaching: The Potential of Large Language Models and
Chatbots in Graduate Engineering Education [0.0]
This paper explores the potential integration of large language models (LLMs) and chatbots into graduate engineering education.
We develop a question bank from the course material and assess the bot's ability to provide accurate, insightful responses.
We demonstrate how powerful plugins like Wolfram Alpha for mathematical problem-solving and code interpretation can significantly extend the bot's capabilities.
arXiv Detail & Related papers (2023-09-09T13:37:22Z) - The Impact of Artificial Intelligence on the Evolution of Digital
Education: A Comparative Study of OpenAI Text Generation Tools including
ChatGPT, Bing Chat, Bard, and Ernie [0.196629787330046]
This review paper delves deep into the rapidly evolving landscape of digital education by contrasting the capabilities and impact of OpenAI's pioneering text generation tools like Bing Chat, Bard, Ernie.
The study underscores its role in democratizing education, fostering autodidacticism, and magnifying student engagement.
However, with such transformative power comes the potential for misuse, as text-generation tools can inadvertently challenge academic integrity.
arXiv Detail & Related papers (2023-09-05T08:15:00Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.