論文の概要: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View
Stereo
- arxiv url: http://arxiv.org/abs/2309.13294v1
- Date: Sat, 23 Sep 2023 07:30:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 20:54:36.267817
- Title: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View
Stereo
- Title(参考訳): MP-MVS:マルチスケールWindows PatchMatchとPlanar Prior Multi-View Stereo
- Authors: Rongxuan Tan, Qing Wang, Xueyan Wang, Chao Yan, Yang Sun and Youyang
Feng
- Abstract要約: レジリエントで効果的なマルチビューステレオアプローチ(MP-MVS)を提案する。
マルチスケールウィンドウPatchMatch (mPM) を設計し, 信頼性の高い非テクスチャ領域の深さを求める。
他のマルチスケールアプローチとは対照的に、より高速で、PatchMatchベースのMVSアプローチに容易に拡張できる。
- 参考スコア(独自算出の注目度): 7.130834755320434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Significant strides have been made in enhancing the accuracy of Multi-View
Stereo (MVS)-based 3D reconstruction. However, untextured areas with unstable
photometric consistency often remain incompletely reconstructed. In this paper,
we propose a resilient and effective multi-view stereo approach (MP-MVS). We
design a multi-scale windows PatchMatch (mPM) to obtain reliable depth of
untextured areas. In contrast with other multi-scale approaches, which is
faster and can be easily extended to PatchMatch-based MVS approaches.
Subsequently, we improve the existing checkerboard sampling schemes by limiting
our sampling to distant regions, which can effectively improve the efficiency
of spatial propagation while mitigating outlier generation. Finally, we
introduce and improve planar prior assisted PatchMatch of ACMP. Instead of
relying on photometric consistency, we utilize geometric consistency
information between multi-views to select reliable triangulated vertices. This
strategy can obtain a more accurate planar prior model to rectify photometric
consistency measurements. Our approach has been tested on the ETH3D High-res
multi-view benchmark with several state-of-the-art approaches. The results
demonstrate that our approach can reach the state-of-the-art. The associated
codes will be accessible at https://github.com/RongxuanTan/MP-MVS.
- Abstract(参考訳): マルチビューステレオ(mvs)を用いた3次元再構成の精度向上に重要な進歩が見られた。
しかし、不安定な光度整合性のある非テクスチャ領域は、しばしば不完全に再構成される。
本稿では,レジリエントで効果的なマルチビューステレオアプローチ(MP-MVS)を提案する。
マルチスケールウィンドウPatchMatch (mPM) を設計し, 信頼性の高い非テクスチャ領域の深さを求める。
他のマルチスケールアプローチとは対照的に、高速で、PatchMatchベースのMVSアプローチに容易に拡張できる。
その後,サンプリングを離れた領域に限定して既存のチェッカーボードサンプリングスキームを改善し,異常発生を緩和しながら空間伝搬の効率を効果的に改善する。
最後に,acmp の planar prior assisted patchmatch を紹介し,改善する。
光度整合性に頼る代わりに、多視点間の幾何的整合性情報を用いて、信頼できる三角頂点を選択する。
この戦略は、測光一貫性の測定を正すより正確な平面事前モデルを得ることができる。
提案手法はETH3D High-Res Multi-view ベンチマークでテストされている。
結果は、我々のアプローチが最先端に到達できることを示しています。
関連するコードはhttps://github.com/RongxuanTan/MP-MVSで参照できる。
関連論文リスト
- A Global Depth-Range-Free Multi-View Stereo Transformer Network with Pose Embedding [76.44979557843367]
本稿では,事前の深度範囲を排除した新しい多視点ステレオ(MVS)フレームワークを提案する。
長距離コンテキスト情報を集約するMDA(Multi-view Disparity Attention)モジュールを導入する。
ソース画像のエピポーラ線上のサンプリング点に対応する電流画素の品質を明示的に推定する。
論文 参考訳(メタデータ) (2024-11-04T08:50:16Z) - SD-MVS: Segmentation-Driven Deformation Multi-View Stereo with Spherical
Refinement and EM optimization [6.886220026399106]
テクスチャレス領域の3次元再構成における課題を解決するために,多視点ステレオ (SD-MVS) を導入する。
私たちは、シーン内のセグメンテーションインスタンスを区別するためにSAM(Segment Anything Model)を採用した最初の人です。
球面座標と正規点の勾配勾配と深度の画素方向探索間隔を組み合わせた独自の精細化戦略を提案する。
論文 参考訳(メタデータ) (2024-01-12T05:25:57Z) - Deep PatchMatch MVS with Learned Patch Coplanarity, Geometric
Consistency and Adaptive Pixel Sampling [19.412014102866507]
我々は、コプランナリティのパッチを学習し、幾何整合性を促進することにより、測光スコアを改善するための学習ベースのアプローチを構築した。
本稿では,より高解像度かつ高解像度なエンコーダでメモリを削減し,より大きな解像度でのトレーニングを可能にするための,適応的画素サンプリング戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T07:29:03Z) - Multiview Stereo with Cascaded Epipolar RAFT [73.7619703879639]
複数の校正画像から高密度点雲などの3次元モデルを再構成する重要な3次元視覚課題であるマルチビューステレオ(MVS)に対処する。
CER-MVSは、RAFT(Recurrent All-Pairs Field Transforms)アーキテクチャに基づく光学フローのための新しいアプローチであるCER-MVSを提案する。CER-MVSは、RAFTに5つの新しい変更を加える: エピポーラコストボリューム、コストボリュームカスケード、コストボリュームのマルチビュー融合、動的監視、深度マップのマルチ解像度融合。
論文 参考訳(メタデータ) (2022-05-09T18:17:05Z) - PatchMVSNet: Patch-wise Unsupervised Multi-View Stereo for
Weakly-Textured Surface Reconstruction [2.9896482273918434]
本稿では,多視点画像の制約を活かしたロバストな損失関数を提案し,あいまいさを緩和する。
我々の戦略は任意の深さ推定フレームワークで実装することができ、任意の大規模MVSデータセットでトレーニングすることができる。
提案手法は,DTU,タンク・アンド・テンプル,ETH3Dなどの一般的なベンチマーク上での最先端手法の性能に達する。
論文 参考訳(メタデータ) (2022-03-04T07:05:23Z) - IterMVS: Iterative Probability Estimation for Efficient Multi-View
Stereo [71.84742490020611]
IterMVSは高解像度マルチビューステレオのための新しいデータ駆動方式である。
隠れ状態の深さの画素単位の確率分布を符号化するGRUに基づく新しい推定器を提案する。
DTU, タンク&テンプル, ETH3Dにおける本手法の有効性と有効性を検証する。
論文 参考訳(メタデータ) (2021-12-09T18:58:02Z) - TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view
Stereo [55.30992853477754]
本稿では,リアルタイムな単分子追跡と高密度フレームワークであるTANDEMを紹介する。
ポーズ推定のために、TANDEMはアライメントのスライディングウィンドウに基づいて光度バンドル調整を行う。
TANDEMは最先端のリアルタイム3D再構成性能を示す。
論文 参考訳(メタデータ) (2021-11-14T19:01:02Z) - Direct Multi-view Multi-person 3D Pose Estimation [138.48139701871213]
マルチビュー画像からマルチパーソン3Dポーズを推定するためのMulti-view Pose Transformer(MvP)を提案する。
MvPは、中間タスクに頼ることなく、複数の人物の3Dポーズを直接クリーンで効率的な方法で回帰する。
我々は,MvPモデルがより効率的でありながら,いくつかのベンチマークにおいて最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-07T13:09:20Z) - PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility [23.427619869594437]
トレーニング可能なコストと正規化の利点を画素単位の推定と組み合わせた,エンドツーエンドのトレーニング可能なPatchMatchベースのMVSアプローチを提案する。
我々は、広く使われているMVSベンチマーク、ETH3D、タンク、テンプル(TnT)について評価する。
論文 参考訳(メタデータ) (2021-08-19T23:14:48Z) - PatchmatchNet: Learned Multi-View Patchmatch Stereo [70.14789588576438]
PatchmatchNetは、高解像度のマルチビューステレオのためのPatchmatchの新規で学習可能なカスケード定式化である。
PatchmatchNetは高速で低メモリを必要とするため、高解像度の画像を処理でき、3Dコストのボリューム正規化を採用する競合製品よりもリソース制限されたデバイスで実行するのに適している。
論文 参考訳(メタデータ) (2020-12-02T18:59:02Z) - Planar Prior Assisted PatchMatch Multi-View Stereo [32.41293572426403]
3Dモデルの完全性は、マルチビューステレオでは依然として難しい問題である。
平面モデルは低テクスチャ領域の深さ推定に有利である。
PatchMatchマルチビューステレオは、サンプリングおよび伝搬方式において非常に効率的である。
論文 参考訳(メタデータ) (2019-12-26T01:34:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。