論文の概要: Spanish Resource Grammar version 2023
- arxiv url: http://arxiv.org/abs/2309.13318v2
- Date: Tue, 26 Mar 2024 11:26:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 01:00:50.253637
- Title: Spanish Resource Grammar version 2023
- Title(参考訳): スペイン語リソース文法バージョン2023
- Authors: Olga Zamaraeva, Lorena S. Allegue, Carlos Gómez-Rodríguez,
- Abstract要約: スペイン資源文法(SRG)の最新バージョンについて紹介する。
このような文法は、文法に関する複雑な仮説の集合を符号化し、言語理論の実証的なテストのリソースとなる。
SRGのこのバージョンは、最新のFreeling形態を使っており、自動生成され、手動で検証された2,291文のツリーバンクと共にリリースされている。
- 参考スコア(独自算出の注目度): 12.009437358109407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the latest version of the Spanish Resource Grammar (SRG), a grammar of Spanish implemented in the HPSG formalism. Such grammars encode a complex set of hypotheses about syntax making them a resource for empirical testing of linguistic theory. They also encode a strict notion of grammaticality which makes them a resource for natural language processing applications in computer-assisted language learning. This version of the SRG uses the recent version of the Freeling morphological analyzer and is released along with an automatically created, manually verified treebank of 2,291 sentences. We explain the treebanking process, emphasizing how it is different from treebanking with manual annotation and how it contributes to empirically-driven development of syntactic theory. The treebanks' high level of consistency and detail makes them a resource for training high-quality semantic parsers and generally systems that benefit from precise and detailed semantics. Finally, we present the grammar's coverage and overgeneration on 100 sentences from a learner corpus, a new research line related to developing methodologies for robust empirical evaluation of hypotheses in second language acquisition.
- Abstract(参考訳): 我々は,HPSG形式に実装されたスペイン語の文法であるスペイン語資源文法(SRG)の最新バージョンを提示する。
このような文法は、文法に関する複雑な仮説の集合を符号化し、言語理論の実証的なテストのリソースとなる。
また、文法性の厳密な概念を符号化し、コンピュータ支援言語学習における自然言語処理アプリケーションのためのリソースとなる。
SRGのこのバージョンは、最新のFreeling形態解析器を使用し、自動生成され、手動で検証された2,291文のツリーバンクと共にリリースされている。
そこで本研究では,手動アノテーションによる木バンクとの違いと,構文理論の実証的発展にどのように貢献するかを強調し,木バンクのプロセスを説明する。
ツリーバンクスの高レベルの一貫性と詳細は、高品質なセマンティックパーサを訓練するためのリソースとなり、一般的には正確で詳細なセマンティックスの恩恵を受ける。
最後に,第2言語習得における仮説の堅牢な実証的評価手法の開発に関連する新たな研究ラインである学習者コーパスから100文の文法のカバレッジとオーバージェネレーションを提示する。
関連論文リスト
- From MTEB to MTOB: Retrieval-Augmented Classification for Descriptive Grammars [0.17205738196786996]
モデルが言語文法からどのように情報を抽出し、分類できるかを評価するためのベンチマークのセットを紹介する。
ベンチマークは、WALSとGrambankの類型的特徴に焦点を当てた、言語家族間で248の言語に関する言語記述を含んでいる。
このベンチマークは、言語モデルの言語的特徴を正確に解釈し抽出するコンテキスト内能力を、初めて包括的に評価するものである。
論文 参考訳(メタデータ) (2024-11-23T14:47:10Z) - Training Neural Networks as Recognizers of Formal Languages [87.06906286950438]
形式言語理論は、特に認識者に関するものである。
代わりに、非公式な意味でのみ類似したプロキシタスクを使用するのが一般的である。
ニューラルネットワークを文字列のバイナリ分類器として直接訓練し評価することで、このミスマッチを補正する。
論文 参考訳(メタデータ) (2024-11-11T16:33:25Z) - Predictability and Causality in Spanish and English Natural Language Generation [6.817247544942709]
本稿では,英語とスペイン語の因果関係と非因果関係を比較検討する。
この実験によると、スペイン語は非因果関係から英語よりも予測可能である。
これらの知見は、双方向トランスフォーマー言語モデルを用いたスペイン語におけるNLGのさらなる研究を支援する。
論文 参考訳(メタデータ) (2024-08-26T14:09:28Z) - CLSE: Corpus of Linguistically Significant Entities [58.29901964387952]
専門家が注釈を付けた言語学的に重要なエンティティ(CLSE)のコーパスをリリースする。
CLSEは74種類のセマンティックタイプをカバーし、航空券売機からビデオゲームまで様々なアプリケーションをサポートする。
言語的に代表されるNLG評価ベンチマークを,フランス語,マラティー語,ロシア語の3言語で作成する。
論文 参考訳(メタデータ) (2022-11-04T12:56:12Z) - AUTOLEX: An Automatic Framework for Linguistic Exploration [93.89709486642666]
本稿では言語学者による言語現象の簡潔な記述の発見と抽出を容易にするための自動フレームワークを提案する。
具体的には、この枠組みを用いて、形態的一致、ケースマーキング、単語順序の3つの現象について記述を抽出する。
本研究では,言語専門家の助けを借りて記述を評価し,人間の評価が不可能な場合に自動評価を行う手法を提案する。
論文 参考訳(メタデータ) (2022-03-25T20:37:30Z) - Rule Augmented Unsupervised Constituency Parsing [11.775897250472116]
本稿では,構文規則の形で存在する言語について,非常に汎用的な言語知識を活用するアプローチを提案する。
MNLIとWSJという2つのベンチマークデータセットで、最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2021-05-21T08:06:11Z) - Unsupervised Learning of Explainable Parse Trees for Improved
Generalisation [15.576061447736057]
より有意義で説明しやすい解析木構造を学ぶために、Tree-LSTMよりも注意メカニズムを提案します。
また,提案モデルの自然言語推論,意味的関連性,感情分析タスクにおける優れた性能を示す。
論文 参考訳(メタデータ) (2021-04-11T12:10:03Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - Automatic Extraction of Rules Governing Morphological Agreement [103.78033184221373]
原文から第一パス文法仕様を抽出する自動フレームワークを開発する。
我々は、世界の多くの言語の文法の中核にあるモルフォシンタクティックな現象である合意を記述する規則の抽出に焦点をあてる。
我々のフレームワークはUniversal Dependenciesプロジェクトに含まれるすべての言語に適用され、有望な結果が得られます。
論文 参考訳(メタデータ) (2020-10-02T18:31:45Z) - Constructing a Family Tree of Ten Indo-European Languages with
Delexicalized Cross-linguistic Transfer Patterns [57.86480614673034]
我々は,デレクシカル化転送を,解釈可能なツリー・ツー・ストリングパターンとツリー・ツー・ツリーパターンとして定式化する。
これにより、言語間移動を定量的に探索し、第二言語習得の問い合わせを拡張することができる。
論文 参考訳(メタデータ) (2020-07-17T15:56:54Z) - A Hybrid Approach to Dependency Parsing: Combining Rules and Morphology
with Deep Learning [0.0]
本稿では,特に訓練データ量に制限のある言語に対して,依存関係解析の2つのアプローチを提案する。
第1のアプローチは、最先端のディープラーニングとルールベースのアプローチを組み合わせ、第2のアプローチは、形態情報をネットワークに組み込む。
提案手法はトルコ語向けに開発されたが、他の言語にも適用可能である。
論文 参考訳(メタデータ) (2020-02-24T08:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。