論文の概要: From Text to Source: Results in Detecting Large Language Model-Generated Content
- arxiv url: http://arxiv.org/abs/2309.13322v2
- Date: Wed, 27 Mar 2024 10:50:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 23:02:36.327587
- Title: From Text to Source: Results in Detecting Large Language Model-Generated Content
- Title(参考訳): テキストからソースへ:大規模言語モデル生成コンテンツの検出結果
- Authors: Wissam Antoun, Benoît Sagot, Djamé Seddah,
- Abstract要約: 大きな言語モデル(LLM)は、人間に似たテキストを生成する能力によって祝われる。
本稿では,LLM生成テキストと人文テキストを区別するために訓練された分類器が,それ以上の訓練を行なわずに目標LLMからテキストを検出することができるかどうかを評価することで,Cross-Model Detectionについて検討する。
この研究では、量化と透かし検出に加えて、ソースモデル識別、モデルファミリー、モデルサイズ分類を含むモデル属性についても検討している。
- 参考スコア(独自算出の注目度): 17.306542392779445
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The widespread use of Large Language Models (LLMs), celebrated for their ability to generate human-like text, has raised concerns about misinformation and ethical implications. Addressing these concerns necessitates the development of robust methods to detect and attribute text generated by LLMs. This paper investigates "Cross-Model Detection," by evaluating whether a classifier trained to distinguish between source LLM-generated and human-written text can also detect text from a target LLM without further training. The study comprehensively explores various LLM sizes and families, and assesses the impact of conversational fine-tuning techniques, quantization, and watermarking on classifier generalization. The research also explores Model Attribution, encompassing source model identification, model family, and model size classification, in addition to quantization and watermarking detection. Our results reveal several key findings: a clear inverse relationship between classifier effectiveness and model size, with larger LLMs being more challenging to detect, especially when the classifier is trained on data from smaller models. Training on data from similarly sized LLMs can improve detection performance from larger models but may lead to decreased performance when dealing with smaller models. Additionally, model attribution experiments show promising results in identifying source models and model families, highlighting detectable signatures in LLM-generated text, with particularly remarkable outcomes in watermarking detection, while no detectable signatures of quantization were observed. Overall, our study contributes valuable insights into the interplay of model size, family, and training data in LLM detection and attribution.
- Abstract(参考訳): 言語モデル(LLM)の広汎な利用は、人間のようなテキストを生成する能力で祝われ、誤情報や倫理的意味に関する懸念を提起している。
これらの懸念に対処するには、LSMによって生成されたテキストを検出し、属性付けするための堅牢な方法の開発が必要である。
本稿では,LLM生成テキストと人文テキストを区別するために訓練された分類器が,それ以上の訓練を行なわずに目標LLMからテキストを検出することができるかどうかを評価することで,Cross-Model Detectionについて検討する。
本研究は,様々なLLMサイズと家族を包括的に検討し,対話型微調整技術,量子化,透かしが分類器の一般化に与える影響を評価する。
この研究では、量化と透かし検出に加えて、ソースモデル識別、モデルファミリー、モデルサイズ分類を含むモデル属性についても検討している。
分類器の有効性とモデルサイズとの間には明確な逆関係があり,特により小さなモデルからのデータに基づいて分類器を訓練する場合,より大きなLLMの検出が困難である。
同様のサイズのLLMからのデータによるトレーニングは、より大きなモデルからの検出性能を向上させることができるが、より小さなモデルを扱う際には性能が低下する可能性がある。
さらに、モデル属性実験は、LLM生成テキスト中の検出可能なシグネチャを強調し、特にウォーターマーキング検出において顕著な結果を示すとともに、量子化の検出可能なシグネチャは観察されなかった。
本研究は,LLM検出および帰属におけるモデルサイズ,家族,およびトレーニングデータの相互作用に関する貴重な知見を提供する。
関連論文リスト
- Robust Detection of LLM-Generated Text: A Comparative Analysis [0.276240219662896]
大規模言語モデルは生命の多くの側面に広く統合することができ、その出力は全てのネットワークリソースを迅速に満たすことができる。
生成したテキストの強力な検出器を開発することがますます重要になっている。
この検出器は、これらの技術の潜在的な誤用を防ぎ、ソーシャルメディアなどのエリアを負の効果から保護するために不可欠である。
論文 参考訳(メタデータ) (2024-11-09T18:27:15Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とAIのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - Hide and Seek: Fingerprinting Large Language Models with Evolutionary Learning [0.40964539027092917]
本稿では,Large Language Model (LLM) モデルの指紋認証のための新しいブラックボックス手法を提案する。
モデルの正しいファミリーを特定する際には, 72%の精度が得られた。
この研究は、LLMの振る舞いを理解するための新しい道を開き、モデル帰属、セキュリティ、そしてAI透明性の幅広い分野に重大な影響を与える。
論文 参考訳(メタデータ) (2024-08-06T00:13:10Z) - Catching Chameleons: Detecting Evolving Disinformation Generated using Large Language Models [16.408611714514976]
我々は,事前学習した言語モデルの一般的な事実チェック機能と協調的に活用するパラメータ効率の高いDLD(Detecting Evolving LLM-Generative Disinformation)を提案する。
実験の結果, TextitDELD は最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-26T00:21:39Z) - Self-training Large Language Models through Knowledge Detection [26.831873737733737]
大規模な言語モデル(LLM)は、ダウンストリームタスク間で印象的なパフォーマンスを達成するために、広範囲のラベル付きデータセットとトレーニング計算を必要とすることが多い。
本稿では,LLMが独自ラベルを自動でキュレートし,未知のデータサンプルを選択的に学習する自己学習パラダイムについて検討する。
経験的評価は、複数の被験者にまたがる世代における幻覚の減少に有意な改善を示した。
論文 参考訳(メタデータ) (2024-06-17T07:25:09Z) - DALD: Improving Logits-based Detector without Logits from Black-box LLMs [56.234109491884126]
大規模言語モデル(LLM)はテキスト生成に革命をもたらし、人間の文章を忠実に模倣する出力を生成する。
我々は、ブラックボックステキスト検出における最先端性能を再定義する革新的なフレームワークであるDLD(Dis Distribution-Aligned LLMs Detection)を提案する。
DALDは、サロゲートモデルの分布を未知の目標LLMの分布と整合させ、高速モデルの反復に対する検出能力とレジリエンスを向上するように設計されている。
論文 参考訳(メタデータ) (2024-06-07T19:38:05Z) - PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics [51.17512229589]
PoLLMgraphは、大規模言語モデルのためのモデルベースのホワイトボックス検出および予測手法である。
LLMの内部状態遷移ダイナミクスを解析することにより,幻覚を効果的に検出できることを示す。
我々の研究は、LLMのモデルベースのホワイトボックス分析の新しい手法を開拓し、LLMの振る舞いの複雑なダイナミクスをさらに探求し、理解し、洗練する研究コミュニティを動機付けている。
論文 参考訳(メタデータ) (2024-04-06T20:02:20Z) - Evolving Knowledge Distillation with Large Language Models and Active
Learning [46.85430680828938]
大規模言語モデル(LLM)は、様々なNLPタスクにまたがる顕著な機能を示している。
従来の研究は、注釈付きデータを生成してLPMの知識をより小さなモデルに抽出しようと試みてきた。
EvoKD: Evolving Knowledge Distillationを提案する。これは、アクティブラーニングの概念を利用して、大規模言語モデルを用いたデータ生成のプロセスをインタラクティブに強化する。
論文 参考訳(メタデータ) (2024-03-11T03:55:24Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
近年,事前学習型大規模言語モデル (LLM) は,インコンテキスト学習(in-context learning)として知られる推論時少数ショット学習能力を実現する上で,顕著な効率性を示している。
本研究では,現実のLLMを潜在変数モデルとみなし,ベイズレンズによる文脈内学習現象を考察することを目的とする。
論文 参考訳(メタデータ) (2023-01-27T18:59:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。