Predicting Temperature of Major Cities Using Machine Learning and Deep
Learning
- URL: http://arxiv.org/abs/2309.13330v1
- Date: Sat, 23 Sep 2023 10:23:00 GMT
- Title: Predicting Temperature of Major Cities Using Machine Learning and Deep
Learning
- Authors: Wasiou Jaharabi, MD Ibrahim Al Hossain, Rownak Tahmid, Md. Zuhayer
Islam, T.M. Saad Rayhan
- Abstract summary: We use the database made by University of Dayton which consists the change of temperature in major cities to predict the temperature of different cities during any time in future.
This document contains our methodology for being able to make such predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Currently, the issue that concerns the world leaders most is climate change
for its effect on agriculture, environment and economies of daily life. So, to
combat this, temperature prediction with strong accuracy is vital. So far, the
most effective widely used measure for such forecasting is Numerical weather
prediction (NWP) which is a mathematical model that needs broad data from
different applications to make predictions. This expensive, time and labor
consuming work can be minimized through making such predictions using Machine
learning algorithms. Using the database made by University of Dayton which
consists the change of temperature in major cities we used the Time Series
Analysis method where we use LSTM for the purpose of turning existing data into
a tool for future prediction. LSTM takes the long-term data as well as any
short-term exceptions or anomalies that may have occurred and calculates trend,
seasonality and the stationarity of a data. By using models such as ARIMA,
SARIMA, Prophet with the concept of RNN and LSTM we can, filter out any
abnormalities, preprocess the data compare it with previous trends and make a
prediction of future trends. Also, seasonality and stationarity help us analyze
the reoccurrence or repeat over one year variable and removes the constrain of
time in which the data was dependent so see the general changes that are
predicted. By doing so we managed to make prediction of the temperature of
different cities during any time in future based on available data and built a
method of accurate prediction. This document contains our methodology for being
able to make such predictions.
Related papers
- Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
This study introduces a hybrid model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to predict historical temperature data.
CNNs are utilized for spatial feature extraction, while LSTMs handle temporal dependencies, resulting in significantly improved prediction accuracy and stability.
arXiv Detail & Related papers (2024-10-19T03:38:53Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
We deal with air quality observations in a city-wide network of ground monitoring stations.
We propose a conditioning block that embeds past and future covariates into the current observations.
We find that conditioning on future weather information has a greater impact than considering past traffic conditions.
arXiv Detail & Related papers (2024-04-08T09:13:16Z) - Aardvark weather: end-to-end data-driven weather forecasting [30.219727555662267]
Aardvark Weather is an end-to-end data-driven weather prediction system.
It ingests raw observations and outputs global gridded forecasts and local station forecasts.
It can be optimised end-to-end to maximise performance over quantities of interest.
arXiv Detail & Related papers (2024-03-30T16:41:24Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Long-Term Typhoon Trajectory Prediction: A Physics-Conditioned Approach
Without Reanalysis Data [18.321586950937647]
We present an approach that harnesses real-time Unified Model (UM) data, sidestepping the limitations of reanalysis data.
Our model provides predictions at 6-hour intervals for up to 72 hours in advance and outperforms both state-of-the-art data-driven methods and numerical weather prediction models.
arXiv Detail & Related papers (2024-01-28T18:28:33Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - MLRM: A Multiple Linear Regression based Model for Average Temperature
Prediction of A Day [3.6704226968275258]
We aim to predict the weather of an area using past meteorological data and features using the Multiple Linear Regression Model.
The model is successfully able to predict the average temperature of a day with an error of 2.8 degrees Celsius.
arXiv Detail & Related papers (2022-03-11T10:22:57Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.