論文の概要: Time-Series Forecasting: Unleashing Long-Term Dependencies with
Fractionally Differenced Data
- arxiv url: http://arxiv.org/abs/2309.13409v1
- Date: Sat, 23 Sep 2023 15:42:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 20:03:09.785716
- Title: Time-Series Forecasting: Unleashing Long-Term Dependencies with
Fractionally Differenced Data
- Title(参考訳): 時系列予測: 差分データによる長期依存の解放
- Authors: Sarit Maitra, Vivek Mishra, Srashti Dwivedi, Sukanya Kundu, Goutam
Kumar Kundu
- Abstract要約: 本研究では,分数差分(FD)のパワーを活用した新しい予測手法を提案する。
FDはメモリを連続的に保存し、モデリングのために安定化する。
教師付き分類アルゴリズムを用いてFDシリーズの性能を検証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study introduces a novel forecasting strategy that leverages the power
of fractional differencing (FD) to capture both short- and long-term
dependencies in time series data. Unlike traditional integer differencing
methods, FD preserves memory in series while stabilizing it for modeling
purposes. By applying FD to financial data from the SPY index and incorporating
sentiment analysis from news reports, this empirical analysis explores the
effectiveness of FD in conjunction with binary classification of target
variables. Supervised classification algorithms were employed to validate the
performance of FD series. The results demonstrate the superiority of FD over
integer differencing, as confirmed by Receiver Operating Characteristic/Area
Under the Curve (ROCAUC) and Mathews Correlation Coefficient (MCC) evaluations.
- Abstract(参考訳): 本研究では,分数差分(FD)のパワーを利用して時系列データにおける短期的および長期的依存関係を捉える新しい予測手法を提案する。
従来の整数差分法とは異なり、FDはメモリを連続的に保存し、モデリングのために安定化する。
スパイ指標からの金融データにfdを適用し,ニュースレポートからの感情分析を組み込むことで,fdの有効性を目標変数のバイナリ分類と組み合わせて検討する。
教師付き分類アルゴリズムを用いてFDシリーズの性能を検証した。
その結果, 整数差に対するFDの優位性を示し, 受信器動作特性/Area Under the Curve (ROCAUC) とMathews correlation Coefficient (MCC) の評価で確認された。
関連論文リスト
- Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
時間差差(TD)学習は、おそらく政策評価に最も広く使用されるものであり、この目的の自然な枠組みとして機能する。
本稿では,Polyak-Ruppert平均化と線形関数近似によるTD学習の整合性について検討し,既存の結果よりも3つの重要な改善点を得た。
論文 参考訳(メタデータ) (2024-10-21T15:34:44Z) - Benchmarking Counterfactual Interpretability in Deep Learning Models for Time Series Classification [6.683066713491661]
Counterfactual (CF) メソッドは、モデル予測を変更するインスタンスの最小限の変更を識別するために使用される。
大規模な研究にもかかわらず、時系列領域におけるCFメソッドの既存のベンチマークは存在しない。
本研究では,CFの望ましい特性を正確に把握するために,定量的なメトリクスを再設計する。
論文 参考訳(メタデータ) (2024-08-22T18:17:26Z) - MTSCI: A Conditional Diffusion Model for Multivariate Time Series Consistent Imputation [41.681869408967586]
主要な研究課題は、どのようにインパルスの整合性を確保するか、すなわち観測値とインパルス値の整合性を確保するかである。
従来の手法は、学習プロセスを導くために、計算対象の帰納的バイアスにのみ依存する。
論文 参考訳(メタデータ) (2024-08-11T10:24:53Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
軌道予測は、自律運転、ロボット工学、シーン理解など、様々な応用において重要な役割を果たしている。
既存のアプローチは主に、一般に標準入力時間を用いて、公開データセットの予測精度を高めるために、コンパクトなニューラルネットワークの開発に重点を置いている。
本稿では,様々な観測期間に対する既存の軌道予測の堅牢性を高めるための,汎用的で効果的なフレームワークFlexiLength Network(FLN)を紹介する。
論文 参考訳(メタデータ) (2024-03-31T17:18:57Z) - Exploring Hierarchical Classification Performance for Time Series Data:
Dissimilarity Measures and Classifier Comparisons [0.0]
本研究では,時系列データ解析における階層分類(HC)とフラット分類(FC)の手法の比較性能について検討した。
Jensen-Shannon Distance (JSD), Task similarity Distance (TSD), Based Distance (CBD)などの異種性対策が活用されている。
論文 参考訳(メタデータ) (2024-02-07T21:46:26Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
本稿では、Channel Dependent(CD)戦略でトレーニングされたモデルが、Channel Dependent(CD)戦略でトレーニングされたモデルよりも優れていることを示す。
以上の結果から,CD手法は高いキャパシティを持つが,分散ドリフト時系列を正確に予測する堅牢性に欠けることがわかった。
本稿では,CI戦略を超越した正規化(PRReg)による予測残差法(Predict Residuals with Regularization, PRReg)を提案する。
論文 参考訳(メタデータ) (2023-04-11T13:15:33Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
分布外性能は,広範囲なモデルと分布シフトに対する分布内性能と強く相関していることを示す。
具体的には,CIFAR-10 と ImageNet の変種に対する分布内分布と分布外分布性能の強い相関関係を示す。
また,CIFAR-10-Cと組織分類データセットCamelyon17-WILDSの合成分布の変化など,相関が弱いケースについても検討した。
論文 参考訳(メタデータ) (2021-07-09T19:48:23Z) - Federated Knowledge Distillation [42.87991207898215]
フェデレート蒸留(Federated distillation, FD)は、一般的にモデルサイズよりも小さい次元のモデル出力のみを交換する分散学習ソリューションである。
この章は、コミュニケーション効率とさまざまなタスクへの適用性を実証しながら、FDの深い理解を提供する。
第2部では、分類タスクに対するFDのベースライン実装について詳述し、FLと比較して精度と通信効率の点でその性能を説明している。
第3部では、非対称なアップリンク・アンド・ダウンリンク無線チャネル上のFDと、強化学習のためのFDという2つの選択されたアプリケーションを提示している。
論文 参考訳(メタデータ) (2020-11-04T15:56:13Z) - Deep Switching Auto-Regressive Factorization:Application to Time Series
Forecasting [16.934920617960085]
DSARFは、時間依存重みと空間依存因子の間の積変数による高次元データを近似する。
DSARFは、深い切替ベクトル自己回帰因子化の観点から重みをパラメータ化するという最先端技術とは異なる。
本実験は, 最先端手法と比較して, DSARFの長期的, 短期的予測誤差において優れた性能を示すものである。
論文 参考訳(メタデータ) (2020-09-10T20:15:59Z) - A Unified Linear Speedup Analysis of Federated Averaging and Nesterov
FedAvg [49.76940694847521]
フェデレーションラーニング(FL)は、互いにプライベートに保持されたデータを共有せずに、参加する一連のデバイスからモデルを共同で学習する。
本稿では,FedAvg(Federated Averaging, FedAvg)に焦点をあてる。
また,FedAvgは収束率や通信効率が異なるが,各ケースで線形スピードアップを享受していることを示す。
論文 参考訳(メタデータ) (2020-07-11T05:59:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。