論文の概要: DenMune: Density peak based clustering using mutual nearest neighbors
- arxiv url: http://arxiv.org/abs/2309.13420v1
- Date: Sat, 23 Sep 2023 16:18:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 20:04:26.588802
- Title: DenMune: Density peak based clustering using mutual nearest neighbors
- Title(参考訳): DenMune:互いに近接した隣人を用いた密度ピークに基づくクラスタリング
- Authors: Mohamed Abbas, Adel El-Zoghobi, Amin Shoukry
- Abstract要約: 多くのクラスタリングアルゴリズムは、クラスタが任意の形状、様々な密度、あるいはデータクラスが互いに不均衡で近接している場合に失敗する。
この課題を満たすために、新しいクラスタリングアルゴリズムであるDenMuneが提示されている。
これは、Kがユーザから要求される唯一のパラメータである大きさKの互いに近い近傍を用いて、密集領域を特定することに基づいている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many clustering algorithms fail when clusters are of arbitrary shapes, of
varying densities, or the data classes are unbalanced and close to each other,
even in two dimensions. A novel clustering algorithm, DenMune is presented to
meet this challenge. It is based on identifying dense regions using mutual
nearest neighborhoods of size K, where K is the only parameter required from
the user, besides obeying the mutual nearest neighbor consistency principle.
The algorithm is stable for a wide range of values of K. Moreover, it is able
to automatically detect and remove noise from the clustering process as well as
detecting the target clusters. It produces robust results on various low and
high-dimensional datasets relative to several known state-of-the-art clustering
algorithms.
- Abstract(参考訳): 多くのクラスタリングアルゴリズムは、クラスタが任意の形状、密度の異なる場合、あるいはデータクラスが2次元であっても不均衡で互いに近接している場合、フェールする。
この課題を克服するために,新たなクラスタリングアルゴリズムであるdenmuneを提案する。
これは、k がユーザから要求される唯一のパラメータであるサイズ k の互いに最も近い近傍を用いて密度の高い領域を特定することに基づく。
アルゴリズムはKの幅広い値に対して安定しており、さらに、クラスタリングプロセスからノイズを自動的に検出および除去し、ターゲットクラスタを検出することができる。
これは、いくつかの既知の最先端クラスタリングアルゴリズムと比較して、さまざまな低次元および高次元データセットで堅牢な結果を生成する。
関連論文リスト
- Clustering Based on Density Propagation and Subcluster Merging [92.15924057172195]
本稿では,クラスタ数を自動的に決定し,データ空間とグラフ空間の両方に適用可能な密度に基づくノードクラスタリング手法を提案する。
二つのノード間の距離を計算する従来の密度クラスタリング法とは異なり,提案手法は伝播過程を通じて密度を決定する。
論文 参考訳(メタデータ) (2024-11-04T04:09:36Z) - Linear time Evidence Accumulation Clustering with KMeans [0.0]
この研究は、平均的なリンククラスタリングの振る舞いを模倣するトリックを記述する。
分割の密度を効率よく計算する方法を見つけ、二次的な複雑さから線形的な複雑さへのコストを削減した。
k平均結果は、計算コストを低く保ちながら、NMIの観点からは、最先端の技術に匹敵する。
論文 参考訳(メタデータ) (2023-11-15T14:12:59Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
平均推定なしで直接データのクラスタを検出する新しいクラスタリングアルゴリズムを提案する。
具体的には,バタワースフィルタを用いてデータ点間の距離行列を構成する。
異なる視点に埋め込まれた相補的な情報をうまく活用するために、テンソルのSchatten p-norm正規化を利用する。
論文 参考訳(メタデータ) (2023-05-12T03:01:41Z) - An enhanced method of initial cluster center selection for K-means
algorithm [0.0]
K-meansアルゴリズムの初期クラスタ選択を改善するための新しい手法を提案する。
Convex Hullアルゴリズムは、最初の2つのセントロイドの計算を容易にし、残りの2つは、以前選択された中心からの距離に応じて選択される。
We obtained only 7.33%, 7.90%, and 0% clustering error in Iris, Letter, and Ruspini data。
論文 参考訳(メタデータ) (2022-10-18T00:58:50Z) - A density peaks clustering algorithm with sparse search and K-d tree [16.141611031128427]
この問題を解決するために,スパース探索とK-d木を用いた密度ピーククラスタリングアルゴリズムを開発した。
分散特性が異なるデータセット上で、他の5つの典型的なクラスタリングアルゴリズムと比較して実験を行う。
論文 参考訳(メタデータ) (2022-03-02T09:29:40Z) - Determinantal consensus clustering [77.34726150561087]
本稿では,クラスタリングアルゴリズムのランダム再起動における決定点プロセス (DPP) の利用を提案する。
DPPは部分集合内の中心点の多様性を好んでいる。
DPPとは対照的に、この手法は多様性の確保と、すべてのデータフェースについて良好なカバレッジを得るために失敗することを示す。
論文 参考訳(メタデータ) (2021-02-07T23:48:24Z) - Clustering of Big Data with Mixed Features [3.3504365823045044]
我々は混合型の大規模データのための新しいクラスタリングアルゴリズムを開発した。
このアルゴリズムは、比較的低い密度値の外れ値とクラスターを検出することができる。
本研究では,本アルゴリズムが実際に有効であることを示す実験結果を示す。
論文 参考訳(メタデータ) (2020-11-11T19:54:38Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
基本的なクラスタリング問題に対して,効率的な微分プライベートアルゴリズムを提案する。
この結果から,SampleとAggregateのプライバシーフレームワークのアルゴリズムの改善が示唆された。
1-Clusterアルゴリズムで使用されるツールの1つは、ClosestPairのより高速な量子アルゴリズムを適度な次元で得るために利用できる。
論文 参考訳(メタデータ) (2020-08-18T16:22:06Z) - Ball k-means [53.89505717006118]
Ball k-meansアルゴリズムは、ポイントセントロイド距離計算の削減に集中して、クラスタを記述するためにボールを使用する。
高速、余分なパラメータなし、単純設計のボールk平均アルゴリズムは、素早いk平均アルゴリズムを全面的に置き換える。
論文 参考訳(メタデータ) (2020-05-02T10:39:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。