論文の概要: Linear time Evidence Accumulation Clustering with KMeans
- arxiv url: http://arxiv.org/abs/2311.09272v1
- Date: Wed, 15 Nov 2023 14:12:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-17 18:06:02.501445
- Title: Linear time Evidence Accumulation Clustering with KMeans
- Title(参考訳): KMeansを用いた線形時間証拠蓄積クラスタリング
- Authors: Ga\"elle Candel
- Abstract要約: この研究は、平均的なリンククラスタリングの振る舞いを模倣するトリックを記述する。
分割の密度を効率よく計算する方法を見つけ、二次的な複雑さから線形的な複雑さへのコストを削減した。
k平均結果は、計算コストを低く保ちながら、NMIの観点からは、最先端の技術に匹敵する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Among ensemble clustering methods, Evidence Accumulation Clustering is one of
the simplest technics. In this approach, a co-association (CA) matrix
representing the co-clustering frequency is built and then clustered to extract
consensus clusters. Compared to other approaches, this one is simple as there
is no need to find matches between clusters obtained from two different
partitionings. Nevertheless, this method suffers from computational issues, as
it requires to compute and store a matrix of size n x n, where n is the number
of items. Due to the quadratic cost, this approach is reserved for small
datasets. This work describes a trick which mimic the behavior of average
linkage clustering. We found a way of computing efficiently the density of a
partitioning, reducing the cost from a quadratic to linear complexity.
Additionally, we proved that the k-means maximizes naturally the density. We
performed experiments on several benchmark datasets where we compared the
k-means and the bisecting version to other state-of-the-art consensus
algorithms. The k-means results are comparable to the best state of the art in
terms of NMI while keeping the computational cost low. Additionally, the
k-means led to the best results in terms of density. These results provide
evidence that consensus clustering can be solved with simple algorithms.
- Abstract(参考訳): アンサンブルクラスタリング手法の中で、Evidence Accumulation Clusteringは最も単純な技術の一つである。
このアプローチでは、共クラスタリング周波数を表す共結合行列を構築し、クラスタ化してコンセンサスクラスタを抽出する。
他のアプローチと比較すると、これは単純で、2つの異なる分割から得られるクラスタ間のマッチを見つける必要がない。
それでもこの方法は計算上の問題に悩まされており、n がアイテム数である n x n の大きさの行列を計算・保存する必要がある。
二次コストのため、このアプローチは小さなデータセット用に予約される。
本稿では,平均連鎖クラスタリングの挙動を模倣する手法について述べる。
分割の密度を効率よく計算する方法を見つけ、二次的な複雑さから線形的な複雑さへのコストを削減した。
さらに、k-平均が自然に密度を最大化することを示した。
k-meansとbisectingバージョンを他の最先端コンセンサスアルゴリズムと比較したいくつかのベンチマークデータセットで実験を行った。
k-meansの結果は、計算コストを低く保ちながら、nmiの点で最高の状態と同等である。
さらに、k-平均は密度の点で最良の結果をもたらす。
これらの結果は、コンセンサスクラスタリングが単純なアルゴリズムで解決できることを示す。
関連論文リスト
- Rethinking k-means from manifold learning perspective [122.38667613245151]
平均推定なしで直接データのクラスタを検出する新しいクラスタリングアルゴリズムを提案する。
具体的には,バタワースフィルタを用いてデータ点間の距離行列を構成する。
異なる視点に埋め込まれた相補的な情報をうまく活用するために、テンソルのSchatten p-norm正規化を利用する。
論文 参考訳(メタデータ) (2023-05-12T03:01:41Z) - An enhanced method of initial cluster center selection for K-means
algorithm [0.0]
K-meansアルゴリズムの初期クラスタ選択を改善するための新しい手法を提案する。
Convex Hullアルゴリズムは、最初の2つのセントロイドの計算を容易にし、残りの2つは、以前選択された中心からの距離に応じて選択される。
We obtained only 7.33%, 7.90%, and 0% clustering error in Iris, Letter, and Ruspini data。
論文 参考訳(メタデータ) (2022-10-18T00:58:50Z) - ck-means, a novel unsupervised learning method that combines fuzzy and
crispy clustering methods to extract intersecting data [1.827510863075184]
本稿では,2つの特徴以上の共通点を共有するデータをクラスタリングする手法を提案する。
この手法の主な考え方は、ファジィ C-Means (FCM) アルゴリズムを用いてファジィクラスタを生成することである。
このアルゴリズムはまた、シルエット指数(SI)によって与えられるクラスタの一貫性に従って、FCMとk平均アルゴリズムのための最適なクラスタ数を見つけることができる。
論文 参考訳(メタデータ) (2022-06-17T19:29:50Z) - K-Splits: Improved K-Means Clustering Algorithm to Automatically Detect
the Number of Clusters [0.12313056815753944]
本稿では,k-meansに基づく改良された階層型アルゴリズムであるk-splitsを紹介する。
提案手法の主な利点は,精度と速度である。
論文 参考訳(メタデータ) (2021-10-09T23:02:57Z) - Fuzzy Clustering with Similarity Queries [56.96625809888241]
ファジィ(fuzzy, soft objective)は、よく知られた$k$-means問題の一般化である。
クエリを少なくすることで、問題の解決が容易になる。
論文 参考訳(メタデータ) (2021-06-04T02:32:26Z) - Determinantal consensus clustering [77.34726150561087]
本稿では,クラスタリングアルゴリズムのランダム再起動における決定点プロセス (DPP) の利用を提案する。
DPPは部分集合内の中心点の多様性を好んでいる。
DPPとは対照的に、この手法は多様性の確保と、すべてのデータフェースについて良好なカバレッジを得るために失敗することを示す。
論文 参考訳(メタデータ) (2021-02-07T23:48:24Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
本稿では,複数のクラスタリングを組み合わせ,個々のクラスタリングよりも優れたパフォーマンスを実現するクラスタリングアンサンブルの問題について検討する。
本稿では,この問題をグローバルな視点から解くために,新しい低ランクテンソル近似法を提案する。
7つのベンチマークデータセットを用いた実験の結果,提案手法は12の最先端手法と比較して,クラスタリング性能のブレークスルーを達成した。
論文 参考訳(メタデータ) (2020-12-16T13:01:37Z) - Clustering of Big Data with Mixed Features [3.3504365823045044]
我々は混合型の大規模データのための新しいクラスタリングアルゴリズムを開発した。
このアルゴリズムは、比較的低い密度値の外れ値とクラスターを検出することができる。
本研究では,本アルゴリズムが実際に有効であることを示す実験結果を示す。
論文 参考訳(メタデータ) (2020-11-11T19:54:38Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
本稿では,2値データのクラスタリング手法について検討し,まず,クラスタのコンパクトさを計測するアグリゲーション基準を定義した。
近隣地域と人口動態最適化メタヒューリスティックスを用いた5つの新しいオリジナル手法が導入された。
準モンテカルロ実験によって生成された16のデータテーブルから、L1の相似性と階層的クラスタリング、k-means(メドイドやPAM)の1つのアグリゲーションの比較を行う。
論文 参考訳(メタデータ) (2020-01-06T23:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。