論文の概要: RL-I2IT: Image-to-Image Translation with Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2309.13672v7
- Date: Tue, 15 Oct 2024 01:57:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 13:59:25.744269
- Title: RL-I2IT: Image-to-Image Translation with Deep Reinforcement Learning
- Title(参考訳): RL-I2IT:深層強化学習による画像間翻訳
- Authors: Xin Wang, Ziwei Luo, Jing Hu, Chengming Feng, Shu Hu, Bin Zhu, Xi Wu, Hongtu Zhu, Xin Li, Siwei Lyu,
- Abstract要約: 画像から画像への変換(I2IT)手法は,ディープラーニング(DL)モデルの単一実行時に画像を生成する。
深部強化学習(DRL)によるステップワイド意思決定問題としてI2ITを再構成する。
RLベースのI2IT(RL-I2IT)を実現する新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 54.40719981158774
- License:
- Abstract: Most existing Image-to-Image Translation (I2IT) methods generate images in a single run of a deep learning (DL) model. However, designing such a single-step model is always challenging, requiring a huge number of parameters and easily falling into bad global minimums and overfitting. In this work, we reformulate I2IT as a step-wise decision-making problem via deep reinforcement learning (DRL) and propose a novel framework that performs RL-based I2IT (RL-I2IT). The key feature in the RL-I2IT framework is to decompose a monolithic learning process into small steps with a lightweight model to progressively transform a source image successively to a target image. Considering that it is challenging to handle high dimensional continuous state and action spaces in the conventional RL framework, we introduce meta policy with a new concept Plan to the standard Actor-Critic model, which is of a lower dimension than the original image and can facilitate the actor to generate a tractable high dimensional action. In the RL-I2IT framework, we also employ a task-specific auxiliary learning strategy to stabilize the training process and improve the performance of the corresponding task. Experiments on several I2IT tasks demonstrate the effectiveness and robustness of the proposed method when facing high-dimensional continuous action space problems. Our implementation of the RL-I2IT framework is available at https://github.com/Algolzw/SPAC-Deformable-Registration.
- Abstract(参考訳): 既存の画像から画像への変換(I2IT)手法は、ディープラーニング(DL)モデルの単一実行で画像を生成する。
しかし、そのような単一ステップモデルの設計は常に困難であり、大量のパラメータが必要であり、すぐに悪いグローバルな最小値に陥り、過度に適合する。
本稿では,深部強化学習(DRL)による段階的意思決定問題としてI2ITを再構成し,RLに基づくI2IT(RL-I2IT)を実現する新しいフレームワークを提案する。
RL-I2ITフレームワークのキーとなる特徴は、モノリシックな学習プロセスを軽量なモデルで小さなステップに分解して、ソースイメージをターゲットイメージに順次変換することである。
従来のRLフレームワークでは,高次元連続状態やアクション空間の扱いが困難なことを考えると,従来のイメージよりも低次元で,かつ,引き込み可能な高次元アクションを生成することができる標準的なアクター・クライブモデルに対して,新しい概念プランによるメタポリシーを導入する。
RL-I2ITフレームワークでは、トレーニングプロセスを安定させ、対応するタスクの性能を向上させるために、タスク固有の補助学習戦略も採用している。
いくつかのI2ITタスクの実験は、高次元連続行動空間問題に直面する際の提案手法の有効性とロバスト性を示している。
RL-I2ITフレームワークの実装はhttps://github.com/Algolzw/SPAC-Deformable-Registrationで公開しています。
関連論文リスト
- Model-Based Transfer Learning for Contextual Reinforcement Learning [5.5597941107270215]
トレーニングすべき優れたタスクを体系的に選択する方法を示し、さまざまなタスクにおける全体的なパフォーマンスを最大化する。
このアプローチの背後にある主要なアイデアは、トレーニングされたモデルを転送することで生じるパフォーマンス損失を明示的にモデル化することです。
都市交通と標準制御ベンチマークを用いて,提案手法を実験的に検証した。
論文 参考訳(メタデータ) (2024-08-08T14:46:01Z) - Simplified Temporal Consistency Reinforcement Learning [19.814047499837084]
本稿では,潜時整合性によって訓練された潜時力学モデルに依存する単純な表現学習手法が,高性能なRLには十分であることを示す。
提案手法は,モデルフリー手法を大きなマージンで上回り,モデルベース手法のサンプル効率を2.4倍高速にトレーニングしながら比較する。
論文 参考訳(メタデータ) (2023-06-15T19:37:43Z) - Combining Reinforcement Learning and Tensor Networks, with an Application to Dynamical Large Deviations [0.0]
テンソルネットワーク(TN)と強化学習(RL)を統合するためのフレームワークを提案する。
我々は,RL問題に対するモデルフリーアプローチであるアクター批判法を考察し,そのポリシーと値関数の近似としてTNを導入する。
論文 参考訳(メタデータ) (2022-09-28T13:33:31Z) - Meta Reinforcement Learning with Successor Feature Based Context [51.35452583759734]
本稿では,既存のメタRLアルゴリズムと競合する性能を実現するメタRL手法を提案する。
本手法は,複数のタスクに対して同時に高品質なポリシーを学習するだけでなく,短時間のトレーニングで新しいタスクに迅速に適応できる。
論文 参考訳(メタデータ) (2022-07-29T14:52:47Z) - Stochastic Planner-Actor-Critic for Unsupervised Deformable Image
Registration [33.72954116727303]
本稿では,大きく変形する医療画像の段階的登録を行う,新しい強化学習ベースのフレームワークを提案する。
本手法は2次元および3次元の医用画像データセットを用いて評価し,その一部は大きな変形を含む。
論文 参考訳(メタデータ) (2021-12-14T14:08:56Z) - REIN-2: Giving Birth to Prepared Reinforcement Learning Agents Using
Reinforcement Learning Agents [0.0]
本稿では,課題学習の目的を課題(あるいは課題の集合)の目的にシフトさせるメタラーニング手法を提案する。
我々のモデルであるREIN-2は、RLフレームワーク内で構成されたメタ学習スキームであり、その目的は、他のRLエージェントの作り方を学ぶメタRLエージェントを開発することである。
従来の最先端のDeep RLアルゴリズムと比較して、実験結果は、人気のあるOpenAI Gym環境において、我々のモデルの顕著な性能を示している。
論文 参考訳(メタデータ) (2021-10-11T10:13:49Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
我々は、モデル誘導深部展開ネットワーク(MoG-DUN)と呼ばれるSISRに対する説明可能なアプローチを提示し、提唱する。
MoG-DUNは正確(エイリアスを少なくする)、計算効率(モデルパラメータを減らした)、多用途(多重劣化を処理できる)である。
RCAN, SRDNF, SRFBNを含む既存の最先端画像手法に対するMoG-DUN手法の優位性は、いくつかの一般的なデータセットと様々な劣化シナリオに関する広範な実験によって実証されている。
論文 参考訳(メタデータ) (2020-09-14T08:23:37Z) - TSIT: A Simple and Versatile Framework for Image-to-Image Translation [103.92203013154403]
画像間翻訳のためのシンプルで多用途なフレームワークを提案する。
新たに提案した特徴変換を用いた2ストリーム生成モデルを提案する。
これにより、マルチスケールのセマンティック構造情報とスタイル表現を効果的に捕捉し、ネットワークに融合させることができる。
体系的な研究は、提案手法をいくつかの最先端タスク固有のベースラインと比較し、知覚的品質と定量的評価の両面での有効性を検証する。
論文 参考訳(メタデータ) (2020-07-23T15:34:06Z) - RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real [74.45688231140689]
本稿では、画像翻訳におけるRL-scene整合性損失を導入し、画像に関連付けられたQ値に対して変換操作が不変であることを保証する。
RL-CycleGANは実世界のシミュレーションから実世界への変換による強化学習のための新しい手法である。
論文 参考訳(メタデータ) (2020-06-16T08:58:07Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。