論文の概要: ORLA*: Mobile Manipulator-Based Object Rearrangement with Lazy A Star
- arxiv url: http://arxiv.org/abs/2309.13707v2
- Date: Sun, 20 Oct 2024 05:23:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:14:08.319588
- Title: ORLA*: Mobile Manipulator-Based Object Rearrangement with Lazy A Star
- Title(参考訳): ORLA*:ラジA星を用いた移動マニピュレータによる物体再構成
- Authors: Kai Gao, Zhaxizhuoma, Yan Ding, Shiqi Zhang, Jingjin Yu,
- Abstract要約: マルチオブジェクト再構成は移動マニピュレータにとって必須のスキルである。
我々の知る限り、移動マニピュレータのための時間最適多目的再構成ソリューションは、まだ未解決の研究方向である。
高品質なオブジェクトのピック・アンド・プレイスシーケンスの探索に遅延(遅延)評価を利用するORLA*を提案する。
- 参考スコア(独自算出の注目度): 23.508506882851
- License:
- Abstract: Effectively performing object rearrangement is an essential skill for mobile manipulators, e.g., setting up a dinner table or organizing a desk. A key challenge in such problems is deciding an appropriate manipulation order for objects to effectively untangle dependencies between objects while considering the necessary motions for realizing the manipulations (e.g., pick and place). To our knowledge, computing time-optimal multi-object rearrangement solutions for mobile manipulators remains a largely untapped research direction. In this research, we propose ORLA*, which leverages delayed (lazy) evaluation in searching for a high-quality object pick and place sequence that considers both end-effector and mobile robot base travel. ORLA* also supports multi-layered rearrangement tasks considering pile stability using machine learning. Employing an optimal solver for finding temporary locations for displacing objects, ORLA* can achieve global optimality. Through extensive simulation and ablation study, we confirm the effectiveness of ORLA* delivering quality solutions for challenging rearrangement instances. Supplementary materials are available at: https://gaokai15.github.io/ORLA-Star/
- Abstract(参考訳): 効果的にオブジェクトアレンジメントを実行することは、例えばディナーテーブルのセットアップやデスクの整理など、モバイルマニピュレータにとって必須のスキルである。
このような問題における重要な課題は、オブジェクト間の依存関係を効果的に解き放つための適切な操作順序を決定することである。
我々の知る限り、移動マニピュレータのための時間最適多目的再構成ソリューションは、まだ未解決の研究方向である。
本研究では,高品質な物体のピック・アンド・プレイス・シーケンスの探索に遅延(遅延)評価を利用するORLA*を提案する。
ORLA*は、機械学習を用いてパイル安定性を考慮した多層再構成タスクもサポートする。
オブジェクトを分解する一時的な位置を見つけるために最適な解法を用いると、ORLA*はグローバルな最適性を達成することができる。
大規模なシミュレーションとアブレーション研究を通じて,ORLA*の高品質なソリューション提供の有効性を確認した。
追加資料は、https://gaokai15.github.io/ORLA-Star/で入手できる。
関連論文リスト
- Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
本稿では,ワークステーションの注文処理,アイテムポッドの割り当て,ワークステーションでの注文処理のスケジュールを最適化することで,ウェアハウジングにおけるロボット部品対ピッカー操作を支援する。
そこで我々は, 大規模近傍探索を用いて, サブプロブレム生成に対する学習を最適化する手法を提案する。
Amazon Roboticsと共同で、我々のモデルとアルゴリズムは、最先端のアプローチよりも、実用的な問題に対するより強力なソリューションを生み出していることを示す。
論文 参考訳(メタデータ) (2024-08-29T20:22:22Z) - Plan-Seq-Learn: Language Model Guided RL for Solving Long Horizon Robotics Tasks [50.27313829438866]
Plan-Seq-Learn (PSL) は、抽象言語と学習した低レベル制御の間のギャップを埋めるためにモーションプランニングを使用するモジュラーアプローチである。
PSLは85%以上の成功率、言語ベース、古典的、エンドツーエンドのアプローチを達成している。
論文 参考訳(メタデータ) (2024-05-02T17:59:31Z) - LLMs for Robotic Object Disambiguation [21.101902684740796]
本研究は,LLMが複雑な意思決定課題の解決に適していることを明らかにする。
我々の研究の重要な焦点は、LLMのオブジェクトの曖昧化能力である。
我々は,LLMのあいまいなクエリを提示する能力を改善するために,数発のプロンプトエンジニアリングシステムを開発した。
論文 参考訳(メタデータ) (2024-01-07T04:46:23Z) - simPLE: a visuotactile method learned in simulation to precisely pick,
localize, regrasp, and place objects [16.178331266949293]
本稿では,精密かつ汎用的なピック・アンド・プレイスの解法について検討する。
正確なピック・アンド・プレイスの解法としてシミュレートを提案する。
SimPLEは、オブジェクトCADモデルのみを前提に、オブジェクトの選択、再彫刻、配置を正確に学習する。
論文 参考訳(メタデータ) (2023-07-24T21:22:58Z) - Planning for Complex Non-prehensile Manipulation Among Movable Objects
by Interleaving Multi-Agent Pathfinding and Physics-Based Simulation [23.62057790524675]
重いクラッタにおける現実世界の操作問題は、ロボットが環境内の物体との潜在的な接触を推論する必要がある。
そこで我々は,対象物を棚から取り出すためのピック・アンド・プレイス・スタイルのタスクに焦点を合わせ,そのタスクを解決するために移動可能なオブジェクトを並べ替える必要がある。
特に、我々のモチベーションは、ロボットが複雑なロボットオブジェクトとオブジェクトオブジェクトの相互作用を引き起こす非包括的再配置動作を推論し、検討できるようにすることである。
論文 参考訳(メタデータ) (2023-03-23T15:29:27Z) - DiffSkill: Skill Abstraction from Differentiable Physics for Deformable
Object Manipulations with Tools [96.38972082580294]
DiffSkillは、変形可能なオブジェクト操作タスクを解決するために、スキル抽象化に微分可能な物理シミュレータを使用する新しいフレームワークである。
特に、勾配に基づくシミュレーターから個々のツールを用いて、まず短距離のスキルを得る。
次に、RGBD画像を入力として取り込む実演軌跡から、ニューラルネットワークの抽象体を学習する。
論文 参考訳(メタデータ) (2022-03-31T17:59:38Z) - IFOR: Iterative Flow Minimization for Robotic Object Rearrangement [92.97142696891727]
IFOR(Iterative Flow Minimization for Robotic Object Rearrangement)は、未知物体の物体再構成問題に対するエンドツーエンドの手法である。
本手法は,合成データのみを訓練しながら,散在するシーンや実世界に適用可能であることを示す。
論文 参考訳(メタデータ) (2022-02-01T20:03:56Z) - Efficient and High-quality Prehensile Rearrangement in Cluttered and
Confined Spaces [16.745331954312775]
この研究は、タスク完了にそのような相互作用が不可欠であり、再配置計画における最先端の結果を拡張する問題に焦点を当てる。
モノトンインスタンスの一般的な制約の下で、各オブジェクトを最大1回移動させることで解決できる、新しい効率的で完全な解法を提案する。
新しいモノトンソルバはグローバルプランナーと統合され、高品質なソリューションで非モノトンインスタンスを高速に解決する。
論文 参考訳(メタデータ) (2021-10-06T14:42:21Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGenは、サブゴールを予測するための学習されたポリシーと、これらのサブゴールに到達するために必要な動作を計画し実行するためのモーションジェネレータを組み合わせたフレームワークである。
本手法は,フォトリアリスティック・シミュレーション環境における7つのロボットタスクの多種多様なセットをベンチマークする。
ReLMoGenは、テスト時に異なるモーションジェネレータ間で顕著な転送可能性を示し、実際のロボットに転送する大きな可能性を示している。
論文 参考訳(メタデータ) (2020-08-18T08:05:15Z) - Visuomotor Mechanical Search: Learning to Retrieve Target Objects in
Clutter [43.668395529368354]
本稿では,教師支援による探索,特権情報による批判,中間レベルの表現を組み合わせた新しい深部RL手順を提案する。
我々のアプローチは、ベースラインやアブレーションよりも高速に学習し、より効率的な解の発見に収束する。
論文 参考訳(メタデータ) (2020-08-13T18:23:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。