論文の概要: Skip-Connected Neural Networks with Layout Graphs for Floor Plan
Auto-Generation
- arxiv url: http://arxiv.org/abs/2309.13881v1
- Date: Mon, 25 Sep 2023 05:20:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 17:03:50.023114
- Title: Skip-Connected Neural Networks with Layout Graphs for Floor Plan
Auto-Generation
- Title(参考訳): 床計画自動生成のためのレイアウトグラフ付きスキップ接続ニューラルネットワーク
- Authors: Yuntae Jeon, Dai Quoc Tran, Seunghee Park
- Abstract要約: 本稿では,レイアウトグラフを統合したスキップ接続型ニューラルネットワークを用いた新しい手法を提案する。
スキップ接続されたレイヤは、マルチスケールフロアプラン情報をキャプチャし、GNNによるエンコーダデコーダネットワークは、ピクセルレベルの確率ベースの生成を容易にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of AI and computer vision techniques, the quest for automated
and efficient floor plan designs has gained momentum. This paper presents a
novel approach using skip-connected neural networks integrated with layout
graphs. The skip-connected layers capture multi-scale floor plan information,
and the encoder-decoder networks with GNN facilitate pixel-level
probability-based generation. Validated on the MSD dataset, our approach
achieved a 56.6 mIoU score in the ICCV 1st CVAAD workshop challenge. Code and
pre-trained models are publicly available at
https://github.com/yuntaeJ/SkipNet-FloorPlanGe.
- Abstract(参考訳): AIとコンピュータビジョン技術の出現により、自動化された効率的なフロアプラン設計の探求が勢いを増している。
本稿では,レイアウトグラフを統合したスキップ接続型ニューラルネットワークを用いた新しい手法を提案する。
スキップ接続層はマルチスケールフロアプラン情報をキャプチャし、GNNを用いたエンコーダデコーダネットワークは画素レベルの確率ベースの生成を容易にする。
ICCV 1st CVAADワークショップでは,MSDデータセットを用いて56.6mIoUのスコアを得た。
コードと事前訓練されたモデルはhttps://github.com/yuntaeJ/SkipNet-FloorPlanGeで公開されている。
関連論文リスト
- Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - Pathfinding Neural Cellular Automata [23.831530224401575]
Pathfindingは、ロボットパス計画、トランスポートルーティング、ゲームプレイなど、幅広い複雑なAIタスクの重要なサブコンポーネントである。
我々は, Breadth-First Search (BFS) のモデル,すなわち最短経路探索のハンドコードと学習を行う。
本稿では、Depth-First Search(DFS)のニューラル実装を提案し、グラフの直径を計算するためのNAAを生成するために、ニューラルネットワークBFSと組み合わせる方法について概説する。
我々は,これらの手書きNCAに触発されたアーキテクチャ変更を実験し,グリッド迷路の直径問題を解くためにゼロからネットワークをトレーニングし,高い能力の一般化を示した。
論文 参考訳(メタデータ) (2023-01-17T11:45:51Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - End-to-end Graph-constrained Vectorized Floorplan Generation with
Panoptic Refinement [16.103152098205566]
本研究では,1次元ベクトルのシーケンスとしてフロアプランを合成することを目的としている。
最初の段階では,ユーザが入力した部屋接続グラフをGCN(Graphal Network)でエンコードし,自動回帰トランスフォーマネットワークを適用して初期フロアプランを生成する。
初期設計を洗練し、より視覚的に魅力的なフロアプランを生成するために、GCNとトランスフォーマーネットワークからなる新しい汎視補正ネットワーク(PRN)を提案する。
論文 参考訳(メタデータ) (2022-07-27T03:19:20Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
数値ノード特徴とグラフ構造を入力とするグラフニューラルネットワーク(GNN)は,グラフデータを用いた各種教師付き学習タスクにおいて,優れた性能を示した。
IID(non-graph)データをGNNに簡単に組み込むことはできない。
本稿では、グラフ認識の伝播をIDデータに意図した任意のモデルで融合するロバストな積み重ねフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-16T22:46:33Z) - HPGNN: Using Hierarchical Graph Neural Networks for Outdoor Point Cloud
Processing [0.7649716717097428]
自律ナビゲーションのためのポイントクラウド処理の最近の改良により、我々は、処理に階層的なグラフニューラルネットワークを使うことに重点を置いている。
階層型グラフニューラルネットワーク(HPGNN)を提案する。
様々なレベルのグラフ粗さでノードの特徴を学習し、情報を抽出する。
これにより、既存のポイントレベルのグラフネットワークが達成に苦慮している詳細を保ちながら、大きなポイントクラウド上で学習することができる。
論文 参考訳(メタデータ) (2022-06-05T11:18:09Z) - Room Classification on Floor Plan Graphs using Graph Neural Networks [0.0]
本研究では,建物床図を非方向性グラフとして表現することで,建物の床図上での部屋分類作業を改善する手法を提案する。
フロアプランの部屋はグラフのノードとして表現され、エッジはマップの隣接性を表す。
その結果,グラフニューラルネットワーク,特にGraphSAGEとTopology Adaptive GCNは,それぞれ80%と81%の精度を達成できた。
論文 参考訳(メタデータ) (2021-08-12T19:59:22Z) - DeepSatData: Building large scale datasets of satellite images for
training machine learning models [77.17638664503215]
本稿では,機械学習モデルの学習のための衛星画像データセットの自動生成のための設計検討を行う。
本稿では,ニューラルネットワークの深層学習と評価の観点から直面する課題について論じる。
論文 参考訳(メタデータ) (2021-04-28T15:13:12Z) - FatNet: A Feature-attentive Network for 3D Point Cloud Processing [1.502579291513768]
本稿では,グローバルポイントベースの機能とエッジベースの機能を組み合わせた,新たな機能指向ニューラルネットワーク層であるfat layerを提案する。
当社のアーキテクチャは,ModelNet40データセットで示すように,ポイントクラウド分類のタスクにおける最先端の成果を達成する。
論文 参考訳(メタデータ) (2021-04-07T23:13:56Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
グラフ畳み込みネットワークは、構造化されたデータポイント間の関係をキャプチャするための最も有望なアプローチである。
マルチタスク方式でグラフベースニューラルネットワークモデルを学習するための3つの新しい自己教師付き補助タスクを提案する。
論文 参考訳(メタデータ) (2020-11-14T11:09:51Z) - Hallucinative Topological Memory for Zero-Shot Visual Planning [86.20780756832502]
視覚計画(VP)では、エージェントは、オフラインで取得した動的システムの観察から目標指向の振る舞いを計画することを学ぶ。
以前のVPに関するほとんどの研究は、学習された潜在空間で計画することでこの問題にアプローチし、結果として品質の低い視覚計画を生み出した。
本稿では,画像空間を直接計画し,競合性能を示すシンプルなVP手法を提案する。
論文 参考訳(メタデータ) (2020-02-27T18:54:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。