論文の概要: Maximum Likelihood Estimation of Latent Variable Structural Equation
Models: A Neural Network Approach
- arxiv url: http://arxiv.org/abs/2309.14073v2
- Date: Thu, 5 Oct 2023 10:26:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-06 21:09:03.864172
- Title: Maximum Likelihood Estimation of Latent Variable Structural Equation
Models: A Neural Network Approach
- Title(参考訳): 潜在変数構造方程式モデルの最大確率推定:ニューラルネットワークによるアプローチ
- Authors: Mehrzad Saremi
- Abstract要約: このモデルの最大推定値を計算することは、ニューラルネットワークのトレーニングと等価であることを示す。
我々は,これらのモデルの最大推定値を計算するGPUベースのアルゴリズムを実装した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a graphical structure for structural equation models that is
stable under marginalization under linearity and Gaussianity assumptions. We
show that computing the maximum likelihood estimation of this model is
equivalent to training a neural network. We implement a GPU-based algorithm
that computes the maximum likelihood estimation of these models.
- Abstract(参考訳): 線形性とガウス性仮定の下での限界化下で安定な構造方程式モデルのグラフィカル構造を提案する。
このモデルの最大確率推定の計算は、ニューラルネットワークのトレーニングと等価であることを示す。
これらのモデルの最大確率推定を計算するgpuベースのアルゴリズムを実装した。
関連論文リスト
- Eliminating Ratio Bias for Gradient-based Simulated Parameter Estimation [0.7673339435080445]
本稿では、可能性関数が解析的に利用できないモデルにおけるパラメータキャリブレーションの課題に対処する。
本稿では,最大推定と後続密度推定の両問題において,比バイアスの問題に対処するマルチタイムスケールを応用した勾配に基づくシミュレーションパラメータ推定フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-20T02:46:15Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Generalizing Backpropagation for Gradient-Based Interpretability [103.2998254573497]
モデルの勾配は、半環を用いたより一般的な定式化の特別な場合であることを示す。
この観測により、バックプロパゲーションアルゴリズムを一般化し、他の解釈可能な統計を効率的に計算することができる。
論文 参考訳(メタデータ) (2023-07-06T15:19:53Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Regularization of Mixture Models for Robust Principal Graph Learning [0.0]
D$次元データポイントの分布から主グラフを学習するために,Mixture Modelsの正規化バージョンを提案する。
モデルのパラメータは期待最大化手順によって反復的に推定される。
論文 参考訳(メタデータ) (2021-06-16T18:00:02Z) - New Algorithms And Fast Implementations To Approximate Stochastic
Processes [0.0]
モデリングプロセスの効率的な近似を求めるために,新しいアルゴリズムと高速な実装を提案する。
ゴールは常に有限モデルを見つけることであり、これは実際のデータプロセスに関する与えられた知識をできるだけ正確に表現するものである。
論文 参考訳(メタデータ) (2020-12-01T06:14:16Z) - SODEN: A Scalable Continuous-Time Survival Model through Ordinary
Differential Equation Networks [14.564168076456822]
本稿では、ニューラルネットワークとスケーラブルな最適化アルゴリズムを用いた生存分析のためのフレキシブルモデルを提案する。
提案手法の有効性を,既存の最先端ディープラーニングサバイバル分析モデルと比較した。
論文 参考訳(メタデータ) (2020-08-19T19:11:25Z) - Estimation of sparse Gaussian graphical models with hidden clustering
structure [8.258451067861932]
隠れクラスタリング構造を持つスパースガウス図形モデルを推定するモデルを提案する。
対称なガウス・シーデルに基づく乗算器の交互方向法を開発した。
合成データと実データの両方に関する数値実験により,本モデルの有効性が示された。
論文 参考訳(メタデータ) (2020-04-17T08:43:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。