論文の概要: IEBins: Iterative Elastic Bins for Monocular Depth Estimation
- arxiv url: http://arxiv.org/abs/2309.14137v1
- Date: Mon, 25 Sep 2023 13:48:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 15:31:05.000345
- Title: IEBins: Iterative Elastic Bins for Monocular Depth Estimation
- Title(参考訳): IEBins: 単眼深度推定のための反復弾性ビン
- Authors: Shuwei Shao, Zhongcai Pei, Xingming Wu, Zhong Liu, Weihai Chen,
Zhengguo Li
- Abstract要約: 分類回帰に基づくMDEのためのイテレーティブ弾性ビン(IEBins)の概念を提案する。
提案する IEBins は,探索範囲を段階的に最適化することで,高品質な深度を探索することを目的としている。
我々は,機能抽出器とGRUアーキテクチャの恩恵を受ける反復的フレームワークからなる専用フレームワークを開発する。
- 参考スコア(独自算出の注目度): 25.71386321706134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monocular depth estimation (MDE) is a fundamental topic of geometric computer
vision and a core technique for many downstream applications. Recently, several
methods reframe the MDE as a classification-regression problem where a linear
combination of probabilistic distribution and bin centers is used to predict
depth. In this paper, we propose a novel concept of iterative elastic bins
(IEBins) for the classification-regression-based MDE. The proposed IEBins aims
to search for high-quality depth by progressively optimizing the search range,
which involves multiple stages and each stage performs a finer-grained depth
search in the target bin on top of its previous stage. To alleviate the
possible error accumulation during the iterative process, we utilize a novel
elastic target bin to replace the original target bin, the width of which is
adjusted elastically based on the depth uncertainty. Furthermore, we develop a
dedicated framework composed of a feature extractor and an iterative optimizer
that has powerful temporal context modeling capabilities benefiting from the
GRU-based architecture. Extensive experiments on the KITTI, NYU-Depth-v2 and
SUN RGB-D datasets demonstrate that the proposed method surpasses prior
state-of-the-art competitors. The source code is publicly available at
https://github.com/ShuweiShao/IEBins.
- Abstract(参考訳): 単眼深度推定(MDE)は、幾何学的コンピュータビジョンの基本的なトピックであり、多くの下流アプリケーションのためのコア技術である。
近年,MDEを確率分布とビン中心の線形結合を用いて深度を予測する分類回帰問題として再構成する手法がいくつかある。
本稿では,分類回帰に基づくMDEのためのイテレーティブ弾性ビン (IEBins) の概念を提案する。
提案するiebinsは,複数のステージを含む探索範囲を段階的に最適化し,各ステージが前段のターゲットビンで細粒度探索を行うことにより,高品質な深さ探索を目標としている。
反復過程における誤差の蓄積を緩和するため,新しい弾性目標ビンを用いて元の目標ビンを置き換え,その幅は深さの不確実性に基づいて弾性的に調整する。
さらに,GRUアーキテクチャの利点を生かした時間的コンテキストモデリング機能を備えた,特徴抽出器と反復最適化器からなる専用フレームワークを開発する。
KITTI、NYU-Depth-v2、SUN RGB-Dデータセットの大規模な実験により、提案手法が最先端の競合より優れていることが示された。
ソースコードはhttps://github.com/ShuweiShao/IEBinsで公開されている。
関連論文リスト
- Hyperboloid GPLVM for Discovering Continuous Hierarchies via Nonparametric Estimation [41.13597666007784]
次元性低減(DR)は複雑な高次元データの有用な表現を提供する。
最近のDR法は、階層データの忠実な低次元表現を導出する双曲幾何学に焦点を当てている。
本稿では,非パラメトリック推定による暗黙的な連続性を持つ高次元階層データを埋め込むためのhGP-LVMを提案する。
論文 参考訳(メタデータ) (2024-10-22T05:07:30Z) - Single Image Depth Prediction Made Better: A Multivariate Gaussian Take [163.14849753700682]
本稿では,画素ごとの深度を連続的にモデル化する手法を提案する。
提案手法の精度(MG)は,KITTI深度予測ベンチマークリーダーボードの上位に位置する。
論文 参考訳(メタデータ) (2023-03-31T16:01:03Z) - Probabilistic partition of unity networks for high-dimensional
regression problems [1.0227479910430863]
我々は高次元回帰問題におけるユニタリネットワーク(PPOU-Net)モデルの分割について検討する。
本稿では適応次元の減少に着目した一般的な枠組みを提案する。
PPOU-Netsは、数値実験において、同等の大きさのベースライン完全接続ニューラルネットワークを一貫して上回っている。
論文 参考訳(メタデータ) (2022-10-06T06:01:36Z) - Non-parametric Depth Distribution Modelling based Depth Inference for
Multi-view Stereo [43.415242967722804]
最近のコストボリュームピラミッドに基づくディープニューラルネットワークは、多視点ステレオからの深度推論に高解像度の画像を効率的に活用する可能性を解き放った。
一般に、これらのアプローチは各ピクセルの深さが一様分布に従うと仮定する。
本研究では,非パラメトリック深度分布モデルを用いて,一様および多モード分布の画素を扱うコストボリュームを構築することを提案する。
論文 参考訳(メタデータ) (2022-05-08T05:13:04Z) - BinsFormer: Revisiting Adaptive Bins for Monocular Depth Estimation [46.678016537618845]
本稿では,分類回帰に基づく深度推定に適したBinsFormerという新しいフレームワークを提案する。
1)適応的なビンの適切な生成、2)確率分布とビン予測の間の十分な相互作用である。
KITTI、NYU、SUN RGB-Dデータセットの実験は、BinsFormerが最先端のモノクル深度推定法をはるかに上回っていることを示している。
論文 参考訳(メタデータ) (2022-04-03T04:38:02Z) - Accelerated replica exchange stochastic gradient Langevin diffusion
enhanced Bayesian DeepONet for solving noisy parametric PDEs [7.337247167823921]
本稿では,DeepONetsのニューラルネットワークアーキテクチャを利用したレプリカ交換型Langevin拡散のトレーニングフレームワークを提案する。
提案するフレームワークの探索と活用機能により,ノイズの多いシナリオにおけるDeepONetsのトレーニング収束性の向上が期待できることを示す。
また,レプリカ交換型Langeving Diffusionにより,雑音のシナリオにおけるDeepONetの平均予測精度も向上することを示す。
論文 参考訳(メタデータ) (2021-11-03T19:23:59Z) - Manifold Topology Divergence: a Framework for Comparing Data Manifolds [109.0784952256104]
本研究では,深部生成モデルの評価を目的としたデータ多様体の比較フレームワークを開発する。
クロスバーコードに基づき,manifold Topology Divergence score(MTop-Divergence)を導入する。
MTop-Divergenceは,様々なモードドロップ,モード内崩壊,モード発明,画像乱れを正確に検出する。
論文 参考訳(メタデータ) (2021-06-08T00:30:43Z) - Depth-conditioned Dynamic Message Propagation for Monocular 3D Object
Detection [86.25022248968908]
モノラル3Dオブジェクト検出の問題を解決するために、コンテキストと奥行きを認識する特徴表現を学びます。
KITTIベンチマークデータセットにおける単眼的アプローチにおける最新の結果を示す。
論文 参考訳(メタデータ) (2021-03-30T16:20:24Z) - CodeVIO: Visual-Inertial Odometry with Learned Optimizable Dense Depth [83.77839773394106]
本稿では,軽量で密結合の深い深度ネットワークと視覚慣性オドメトリーシステムを提案する。
我々は、初期深度予測の精度を高めるために、以前にVIOから切り離されたスパース特徴を持つネットワークを提供する。
本稿では,ネットワークとコードヤコビアンでのみGPUアクセラレーションを活用しながら,シングルスレッド実行でリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-12-18T09:42:54Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。