論文の概要: Hyperboloid GPLVM for Discovering Continuous Hierarchies via Nonparametric Estimation
- arxiv url: http://arxiv.org/abs/2410.16698v1
- Date: Tue, 22 Oct 2024 05:07:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:28:08.602248
- Title: Hyperboloid GPLVM for Discovering Continuous Hierarchies via Nonparametric Estimation
- Title(参考訳): 非パラメトリック推定による連続階層の発見のためのハイパーボロイドGPLVM
- Authors: Koshi Watanabe, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama,
- Abstract要約: 次元性低減(DR)は複雑な高次元データの有用な表現を提供する。
最近のDR法は、階層データの忠実な低次元表現を導出する双曲幾何学に焦点を当てている。
本稿では,非パラメトリック推定による暗黙的な連続性を持つ高次元階層データを埋め込むためのhGP-LVMを提案する。
- 参考スコア(独自算出の注目度): 41.13597666007784
- License:
- Abstract: Dimensionality reduction (DR) offers a useful representation of complex high-dimensional data. Recent DR methods focus on hyperbolic geometry to derive a faithful low-dimensional representation of hierarchical data. However, existing methods are based on neighbor embedding, frequently ruining the continual relation of the hierarchies. This paper presents hyperboloid Gaussian process (GP) latent variable models (hGP-LVMs) to embed high-dimensional hierarchical data with implicit continuity via nonparametric estimation. We adopt generative modeling using the GP, which brings effective hierarchical embedding and executes ill-posed hyperparameter tuning. This paper presents three variants that employ original point, sparse point, and Bayesian estimations. We establish their learning algorithms by incorporating the Riemannian optimization and active approximation scheme of GP-LVM. For Bayesian inference, we further introduce the reparameterization trick to realize Bayesian latent variable learning. In the last part of this paper, we apply hGP-LVMs to several datasets and show their ability to represent high-dimensional hierarchies in low-dimensional spaces.
- Abstract(参考訳): 次元性低減(DR)は複雑な高次元データの有用な表現を提供する。
最近のDR法は、階層データの忠実な低次元表現を導出する双曲幾何学に焦点を当てている。
しかし、既存の手法は隣人の埋め込みに基づいており、しばしば階層の連続的な関係を台無しにする。
本稿では,高次元階層データを非パラメトリック推定により暗黙的な連続性で埋め込むために,ハイパーボロイドガウス過程 (GP) 潜時変数モデル (hGP-LVMs) を提案する。
GPを用いた生成モデルを導入し,実効的な階層埋め込みを実現し,過度なパラメータ調整を行う。
本稿では,原点,スパース点,ベイズ推定を用いた3つの変種について述べる。
GP-LVMのリーマン最適化と能動近似を取り入れた学習アルゴリズムを確立する。
ベイジアン推論では、ベイジアン潜在変数学習を実現するためのパラメータ化手法をさらに導入する。
本稿では,hGP-LVMを複数のデータセットに適用し,低次元空間における高次元階層を表現する能力を示す。
関連論文リスト
- On Probabilistic Pullback Metrics on Latent Hyperbolic Manifolds [5.724027955589408]
本稿では,階層関係のモデル化に適した双曲多様体について述べる。
本稿では,VM の非線形写像によって生じる歪みを考慮に入れたプルバックメトリックによる双曲的計量の増大を提案する。
様々な実験を通して、引き戻し距離の測地学は双曲ラテント空間の幾何学を尊重するだけでなく、基礎となるデータ分布と整合することを示した。
論文 参考訳(メタデータ) (2024-10-28T09:13:00Z) - From Semantics to Hierarchy: A Hybrid Euclidean-Tangent-Hyperbolic Space Model for Temporal Knowledge Graph Reasoning [1.1372536310854844]
時間的知識グラフ(TKG)推論は、過去のデータに基づいて将来の出来事を予測する。
既存のユークリッドモデルはセマンティクスを捉えるのに優れているが、階層構造に苦しむ。
ユークリッドモデルと双曲モデルの両方の強みを利用する新しいハイブリッド幾何空間アプローチを提案する。
論文 参考訳(メタデータ) (2024-08-30T10:33:08Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
教師なし学習は、潜在的に大きな高次元データセットの基盤構造を捉えることを目的としている。
本研究では、最適輸送のレンズの下でこれらのアプローチを再検討し、Gromov-Wasserstein問題と関係を示す。
これにより、分散還元と呼ばれる新しい一般的なフレームワークが公開され、DRとクラスタリングを特別なケースとして回復し、単一の最適化問題内でそれらに共同で対処することができる。
論文 参考訳(メタデータ) (2024-02-03T19:00:19Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
自己組織化マップ(SOM)におけるトポロジカルプロジェクションに基づく半教師付き学習手法を提案する。
提案手法は,まずラベル付きデータ上でSOMを訓練し,最小限のラベル付きデータポイントをキーベストマッチングユニット(BMU)に割り当てる。
提案した最小教師付きモデルが従来の回帰手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-01-12T22:51:48Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
非自明な多様体上の高次元タスクにスケールできることを示す。
我々は、$SU(n)$格子上のQCD密度と高次元超球面上の対照的に学習された埋め込みをモデル化する。
論文 参考訳(メタデータ) (2023-10-30T21:27:53Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Bayesian Hyperbolic Multidimensional Scaling [2.5944208050492183]
低次元多様体が双曲型であるとき、多次元スケーリングに対するベイズ的アプローチを提案する。
ケース制御可能性近似は、より大きなデータ設定における後部分布からの効率的なサンプリングを可能にする。
提案手法は,シミュレーション,標準基準データセット,インディアン村のネットワークデータ,およびヒトの遺伝子発現データを用いて,最先端の代替手法に対して評価する。
論文 参考訳(メタデータ) (2022-10-26T23:34:30Z) - Deep Recursive Embedding for High-Dimensional Data [9.611123249318126]
本稿では,DNN(Deep Neural Network)と高次元データ埋め込みのための数学誘導埋め込みルールを組み合わせることを提案する。
本稿では,高次元空間から低次元空間へのパラメトリックマッピングを学習可能な汎用ディープ埋め込みネットワーク(DEN)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-31T23:22:33Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
グラフ畳み込みネットワーク(GCN)はすでに、不規則なデータをモデル化する強力な能力を実証している。
本稿では,ポアンカー幾何学を用いて定義した空間時空間GCNアーキテクチャを提案する。
提案手法を,現在最大規模の2つの3次元データセット上で評価する。
論文 参考訳(メタデータ) (2020-07-30T18:23:18Z) - Conditional Deep Gaussian Processes: multi-fidelity kernel learning [6.599344783327053]
固定された低忠実度データにより遅延GPを直接支持する条件付きDGPモデルを提案する。
合成および高次元データを用いた実験は、他の多次元回帰法と同等の性能を示す。
低忠実度データと階層DGP構造により、実効カーネルは真関数の帰納バイアスを符号化する。
論文 参考訳(メタデータ) (2020-02-07T14:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。