論文の概要: Machine-assisted mixed methods: augmenting humanities and social
sciences with artificial intelligence
- arxiv url: http://arxiv.org/abs/2309.14379v1
- Date: Sun, 24 Sep 2023 14:21:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 16:43:49.507353
- Title: Machine-assisted mixed methods: augmenting humanities and social
sciences with artificial intelligence
- Title(参考訳): 機械支援混合手法:人工知能による人文科学と社会科学の強化
- Authors: Andres Karjus
- Abstract要約: 大規模言語モデル(LLM)の能力の増大は、人文科学や社会科学におけるデータ分析をスケールアップする前例のない機会となる。
このコントリビューションは、定性的な分析専門知識とマシンスケーラビリティを活用するための、体系的な混合メソッドフレームワークを提案する。
課題には言語と談話の分析、語彙の意味変化の検出、インタビュー分析、歴史的事象原因推論、テキストマイニングなどが含まれる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing capacities of large language models (LLMs) present an
unprecedented opportunity to scale up data analytics in the humanities and
social sciences, augmenting and automating qualitative analytic tasks
previously typically allocated to human labor. This contribution proposes a
systematic mixed methods framework to harness qualitative analytic expertise,
machine scalability, and rigorous quantification, with attention to
transparency and replicability. 16 machine-assisted case studies are showcased
as proof of concept. Tasks include linguistic and discourse analysis, lexical
semantic change detection, interview analysis, historical event cause inference
and text mining, detection of political stance, text and idea reuse, genre
composition in literature and film; social network inference, automated
lexicography, missing metadata augmentation, and multimodal visual cultural
analytics. In contrast to the focus on English in the emerging LLM
applicability literature, many examples here deal with scenarios involving
smaller languages and historical texts prone to digitization distortions. In
all but the most difficult tasks requiring expert knowledge, generative LLMs
can demonstrably serve as viable research instruments. LLM (and human)
annotations may contain errors and variation, but the agreement rate can and
should be accounted for in subsequent statistical modeling; a bootstrapping
approach is discussed. The replications among the case studies illustrate how
tasks previously requiring potentially months of team effort and complex
computational pipelines, can now be accomplished by an LLM-assisted scholar in
a fraction of the time. Importantly, this approach is not intended to replace,
but to augment researcher knowledge and skills. With these opportunities in
sight, qualitative expertise and the ability to pose insightful questions have
arguably never been more critical.
- Abstract(参考訳): 大規模言語モデル(LLM)の能力の増大は、人文科学や社会科学におけるデータ分析をスケールアップする前例のない機会となり、以前は人間の労働に割り当てられていた定性的分析タスクを増強し自動化する。
この貢献は、透明性と再現性に注目して、質的分析的専門知識、機械のスケーラビリティ、厳密な定量化を活用するための体系的混合手法フレームワークを提案する。
16の機械支援ケーススタディが概念実証として紹介されている。
課題には、言語的・言論的分析、語彙的意味変化の検出、インタビュー分析、歴史的事象原因推論とテキストマイニング、政治的スタンスの検出、テキストとアイデアの再利用、文学と映画のジャンル構成、ソーシャルネットワーク推論、自動語彙分析、メタデータの不足、マルチモーダル視覚文化分析が含まれる。
新興LLM適用可能性文学における英語の焦点とは対照的に、この例では、より小さな言語や歴史的テキストがデジタル化の歪みを引き起こすシナリオを扱うことが多い。
専門家の知識を必要とする最も難しい作業を除いて、生成的LLMは、明らかに実行可能な研究機器として機能する。
LLM(および人間)アノテーションはエラーやバリエーションを含むことがあるが、後続の統計モデルでは合意率を考慮すべきであり、ブートストラッピングのアプローチが議論されている。
ケーススタディのレプリケーションは、以前チームの取り組みと複雑な計算パイプラインが必要だったタスクが、短期間でllmの支援を受けた研究者によって達成可能になったことを示しています。
重要なのは、このアプローチは代替ではなく、研究者の知識とスキルを増強することである。
こうした機会を目の当たりにして、質的な専門知識と洞察に富んだ質問に答える能力は、間違いなくそれ以上に重要ではない。
関連論文リスト
- Large Language Model for Qualitative Research -- A Systematic Mapping Study [3.302912592091359]
先進的な生成AIを駆使した大規模言語モデル(LLM)がトランスフォーメーションツールとして登場した。
本研究は, LLMを用いた定性的研究に関する文献を体系的にマッピングする。
LLMは様々な分野にまたがって利用されており、プロセスの自動化の可能性を示している。
論文 参考訳(メタデータ) (2024-11-18T21:28:00Z) - Evaluation of OpenAI o1: Opportunities and Challenges of AGI [112.0812059747033]
o1-previewは目覚ましい能力を示し、しばしば人間レベルまたは優れたパフォーマンスを実現した。
このモデルは、様々な分野にわたる複雑な推論と知識の統合を必要とするタスクに優れていた。
総合的な結果は、人工知能への大きな進歩を示している。
論文 参考訳(メタデータ) (2024-09-27T06:57:00Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Automating Thematic Analysis: How LLMs Analyse Controversial Topics [5.025737475817937]
大規模言語モデル(LLM)は有望な分析ツールである。
本稿では,LLMが議論の的となっているトピックのテーマ分析をどのようにサポートするかを検討する。
本研究は,人間エージェントと機械エージェントのセマンティック分類における重なり合いと相違点に注目した。
論文 参考訳(メタデータ) (2024-05-11T05:28:25Z) - QuaLLM: An LLM-based Framework to Extract Quantitative Insights from Online Forums [10.684484559041284]
本研究は,オンラインフォーラム上でテキストデータから量的洞察を分析し,抽出する新しいフレームワークであるQuaLLMを紹介する。
このフレームワークを適用して、Redditの2つのライドシェアワーカーコミュニティからの100万以上のコメントを分析しました。
論文 参考訳(メタデータ) (2024-05-08T18:20:03Z) - Can Large Language Models Serve as Data Analysts? A Multi-Agent Assisted
Approach for Qualitative Data Analysis [6.592797748561459]
大規模言語モデル(LLM)は、ソフトウェア工学(SE)における協調的な人間とロボットの相互作用を可能にした
定性的な研究において,新たな拡張性と精度の次元を導入し,SEにおけるデータ解釈手法を変革する可能性がある。
論文 参考訳(メタデータ) (2024-02-02T13:10:46Z) - Exploring the Potential of Large Language Models in Computational Argumentation [54.85665903448207]
大規模言語モデル (LLM) は、文脈を理解し、自然言語を生成するという印象的な能力を実証している。
この研究は、ChatGPT、Flanモデル、LLaMA2モデルなどのLLMをゼロショットと少数ショットの両方で評価することを目的としている。
論文 参考訳(メタデータ) (2023-11-15T15:12:15Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational
Finance Question Answering [70.6359636116848]
本稿では,対話型質問応答における数値推論の連鎖を研究するために,新しい大規模データセットConvFinQAを提案する。
我々のデータセットは、現実世界の会話において、長距離で複雑な数値推論パスをモデル化する上で大きな課題となる。
論文 参考訳(メタデータ) (2022-10-07T23:48:50Z) - AR-LSAT: Investigating Analytical Reasoning of Text [57.1542673852013]
テキストの分析的推論の課題を研究し、1991年から2016年までのロースクール入学試験からの質問からなる新しいデータセットを紹介します。
我々は,この課題をうまくこなすために必要な知識理解と推論能力を分析する。
論文 参考訳(メタデータ) (2021-04-14T02:53:32Z) - Automatic coding of students' writing via Contrastive Representation
Learning in the Wasserstein space [6.884245063902909]
本研究は,学生の文章の質的分析を支援する統計的機械学習(ML)手法を構築するためのステップである。
MLアルゴリズムは,人間解析のラタ間信頼性に近づいた。
論文 参考訳(メタデータ) (2020-11-26T16:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。