Unveiling Fairness Biases in Deep Learning-Based Brain MRI
Reconstruction
- URL: http://arxiv.org/abs/2309.14392v1
- Date: Mon, 25 Sep 2023 11:07:25 GMT
- Title: Unveiling Fairness Biases in Deep Learning-Based Brain MRI
Reconstruction
- Authors: Yuning Du, Yuyang Xue, Rohan Dharmakumar, Sotirios A. Tsaftaris
- Abstract summary: Deep learning (DL) reconstruction particularly of MRI has led to improvements in image fidelity and reduction of acquisition time.
It is essential to consider fairness in DL algorithms, particularly in terms of demographic characteristics.
This study presents the first fairness analysis in a DL-based brain MRI reconstruction model.
- Score: 11.766644467766557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning (DL) reconstruction particularly of MRI has led to improvements
in image fidelity and reduction of acquisition time. In neuroimaging, DL
methods can reconstruct high-quality images from undersampled data. However, it
is essential to consider fairness in DL algorithms, particularly in terms of
demographic characteristics. This study presents the first fairness analysis in
a DL-based brain MRI reconstruction model. The model utilises the U-Net
architecture for image reconstruction and explores the presence and sources of
unfairness by implementing baseline Empirical Risk Minimisation (ERM) and
rebalancing strategies. Model performance is evaluated using image
reconstruction metrics. Our findings reveal statistically significant
performance biases between the gender and age subgroups. Surprisingly, data
imbalance and training discrimination are not the main sources of bias. This
analysis provides insights of fairness in DL-based image reconstruction and
aims to improve equity in medical AI applications.
Related papers
- Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
We propose a novel class of state-of-the-art (SOTA) generative model, which exhibits the capability to model intricate relationships.
We devise a new diffusion restoration network that leverages the produced enhanced image and noise-containing images.
Two visual evaluation branches are designed to comprehensively analyze the obtained high-level feature information.
arXiv Detail & Related papers (2024-02-22T09:39:46Z) - Analysis of Deep Image Prior and Exploiting Self-Guidance for Image
Reconstruction [13.277067849874756]
We study how DIP recovers information from undersampled imaging measurements.
We introduce a self-driven reconstruction process that concurrently optimize both the network weights and the input.
Our method incorporates a novel denoiser regularization term which enables robust and stable joint estimation of both the network input and reconstructed image.
arXiv Detail & Related papers (2024-02-06T15:52:23Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Iterative Data Refinement for Self-Supervised MR Image Reconstruction [18.02961646651716]
We propose a data refinement framework for self-supervised MR image reconstruction.
We first analyze the reason of the performance gap between self-supervised and supervised methods.
Then, we design an effective self-supervised training data refinement method to reduce this data bias.
arXiv Detail & Related papers (2022-11-24T06:57:16Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only.
The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods.
arXiv Detail & Related papers (2022-10-25T08:34:29Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Interpretability Aware Model Training to Improve Robustness against
Out-of-Distribution Magnetic Resonance Images in Alzheimer's Disease
Classification [8.050897403457995]
We propose an interpretability aware adversarial training regime to improve robustness against out-of-distribution samples originating from different MRI hardware.
We present preliminary results showing promising performance on out-of-distribution samples.
arXiv Detail & Related papers (2021-11-15T04:42:47Z) - Data augmentation for deep learning based accelerated MRI reconstruction
with limited data [46.44703053411933]
Deep neural networks have emerged as very successful tools for image restoration and reconstruction tasks.
To achieve state-of-the-art performance, training on large and diverse sets of images is considered critical.
We propose a pipeline for data augmentation for accelerated MRI reconstruction and study its effectiveness at reducing the required training data.
arXiv Detail & Related papers (2021-06-28T19:08:46Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
Deep learning methods have been shown to produce superior performance on MR image reconstruction.
These methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations.
We propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy.
arXiv Detail & Related papers (2021-03-03T03:04:40Z) - Joint reconstruction and bias field correction for undersampled MR
imaging [7.409376558513677]
Undersampling the k-space in MRI allows saving precious acquisition time, yet results in an ill-posed inversion problem.
Deep learning schemes are susceptible to differences between the training data and the image to be reconstructed at test time.
In this work, we address the sensitivity of the reconstruction problem to the bias field and propose to model it explicitly in the reconstruction.
arXiv Detail & Related papers (2020-07-26T12:58:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.