論文の概要: Risk of AI in Healthcare: A Comprehensive Literature Review and Study
Framework
- arxiv url: http://arxiv.org/abs/2309.14530v1
- Date: Mon, 25 Sep 2023 21:09:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 15:46:20.911998
- Title: Risk of AI in Healthcare: A Comprehensive Literature Review and Study
Framework
- Title(参考訳): 医療におけるAIのリスク: 総合的な文献レビューと研究フレームワーク
- Authors: Apoorva Muley, Prathamesh Muzumdar, George Kurian, and Ganga Prasad
Basyal
- Abstract要約: 本研究は,医療分野におけるAIリスクに着目した研究の流れを網羅的に検討し,その分野の異なるジャンルを探求することを目的とする。
臨床データリスク、技術的リスク、社会倫理リスクの3つの主要なAIリスクを識別するために、39の論文を慎重に分析するために選択基準が採用された。
- 参考スコア(独自算出の注目度): 0.5130062125323206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study conducts a thorough examination of the research stream focusing on
AI risks in healthcare, aiming to explore the distinct genres within this
domain. A selection criterion was employed to carefully analyze 39 articles to
identify three primary genres of AI risks prevalent in healthcare: clinical
data risks, technical risks, and socio-ethical risks. Selection criteria was
based on journal ranking and impact factor. The research seeks to provide a
valuable resource for future healthcare researchers, furnishing them with a
comprehensive understanding of the complex challenges posed by AI
implementation in healthcare settings. By categorizing and elucidating these
genres, the study aims to facilitate the development of empirical qualitative
and quantitative research, fostering evidence-based approaches to address
AI-related risks in healthcare effectively. This endeavor contributes to
building a robust knowledge base that can inform the formulation of risk
mitigation strategies, ensuring safe and efficient integration of AI
technologies in healthcare practices. Thus, it is important to study AI risks
in healthcare to build better and efficient AI systems and mitigate risks.
- Abstract(参考訳): 本研究は,医療分野におけるAIリスクに着目した研究の流れを網羅的に検討し,その分野の異なるジャンルを探求することを目的とする。
臨床データリスク、技術的リスク、社会倫理リスクの3つの主要なAIリスクを識別するために、39の論文を慎重に分析するために選択基準が採用された。
選考基準は雑誌のランキングとインパクトファクターに基づいていた。
この研究は、将来のヘルスケア研究者に貴重なリソースを提供し、医療環境におけるAIの実装によって引き起こされる複雑な課題を包括的に理解することを目指している。
この研究は、これらのジャンルを分類し、解明することにより、実証的な質的、定量的研究の発展を促進し、医療におけるAI関連のリスクに効果的に対処するためのエビデンスベースのアプローチを促進することを目的としている。
この取り組みは、リスク軽減戦略の定式化を通知し、医療実践におけるAIテクノロジの安全かつ効率的な統合を保証する、堅牢な知識基盤の構築に寄与する。
したがって、より良い効率的なAIシステムを構築し、リスクを軽減するために、医療におけるAIリスクを研究することが重要である。
関連論文リスト
- Safety challenges of AI in medicine [23.817939398729955]
レビューでは、医療の安全性を損なう可能性のあるAIプラクティスの潜在的なリスクについて検討している。
試験は、多様な集団におけるパフォーマンス、一貫性のない運用安定性、効果的なモデルチューニングのための高品質なデータの必要性、モデルの開発とデプロイメントにおけるデータ漏洩のリスクを低減した。
本稿の第2部では、医学的文脈において、大規模言語モデル(LLM)に特有の安全性の問題について論じる。
論文 参考訳(メタデータ) (2024-09-11T13:47:47Z) - Risks and NLP Design: A Case Study on Procedural Document QA [52.557503571760215]
より具体的なアプリケーションやユーザに対して分析を専門化すれば,ユーザに対するリスクや害の明確な評価が可能になる,と我々は主張する。
リスク指向のエラー分析を行い、リスクの低減とパフォーマンスの向上を図り、将来のシステムの設計を通知する。
論文 参考訳(メタデータ) (2024-08-16T17:23:43Z) - EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
EAIRiskBenchは、EAIシナリオにおける自動物理的リスクアセスメントのための新しいフレームワークである。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - AI-Driven Healthcare: A Survey on Ensuring Fairness and Mitigating Bias [2.398440840890111]
AIアプリケーションは、診断精度、治療のパーソナライゼーション、患者の結果予測を大幅に改善した。
これらの進歩は、実質的な倫理的・公正性の課題ももたらした。
これらのバイアスは、医療提供の格差をもたらし、異なる人口集団の診断精度と治療結果に影響を与える可能性がある。
論文 参考訳(メタデータ) (2024-07-29T02:39:17Z) - Reporting Risks in AI-based Assistive Technology Research: A Systematic Review [2.928964540437144]
視覚障害者のためのAIベースの支援技術に関する研究について,系統的な文献レビューを行った。
本研究は, 実証可能なプロトタイプを用いたほとんどの技術が, 観光コミュニティのメンバーによる人間による研究では評価されていないことを示す。
論文 参考訳(メタデータ) (2024-07-01T05:22:44Z) - Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Generative AI(Gen AI)の応用は、科学や医学、教育など、さまざまな分野に革命をもたらすことが期待されている。
こうした地震の変化の可能性は、この技術の潜在的なリスクについて活発に議論を巻き起こし、より厳格な規制を要求した。
この規制は、オープンソースの生成AIの誕生する分野を危険にさらす可能性がある。
論文 参考訳(メタデータ) (2024-05-14T13:37:36Z) - Emotional Intelligence Through Artificial Intelligence : NLP and Deep Learning in the Analysis of Healthcare Texts [1.9374282535132377]
本論文は,医療関連テキストにおける感情評価における人工知能の利用に関する方法論的考察である。
我々は、感情分析を強化し、感情を分類し、患者の結果を予測するためにAIを利用する多くの研究を精査する。
AIの倫理的応用を保証すること、患者の機密性を保護すること、アルゴリズムの手続きにおける潜在的なバイアスに対処することを含む、継続的な課題がある。
論文 参考訳(メタデータ) (2024-03-14T15:58:13Z) - Control Risk for Potential Misuse of Artificial Intelligence in Science [85.91232985405554]
我々は、科学におけるAI誤用の危険性の認識を高めることを目的としている。
化学科学における誤用の実例を取り上げる。
我々は、科学におけるAIモデルの誤用リスクを制御するSciGuardというシステムを提案する。
論文 参考訳(メタデータ) (2023-12-11T18:50:57Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Quantitative AI Risk Assessments: Opportunities and Challenges [9.262092738841979]
AIベースのシステムは、組織、個人、社会に価値を提供するために、ますます活用されている。
リスクは、提案された規制、訴訟、および一般的な社会的懸念につながった。
本稿では,定量的AIリスクアセスメントの概念について考察する。
論文 参考訳(メタデータ) (2022-09-13T21:47:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。