論文の概要: Emotional Intelligence Through Artificial Intelligence : NLP and Deep Learning in the Analysis of Healthcare Texts
- arxiv url: http://arxiv.org/abs/2403.09762v1
- Date: Thu, 14 Mar 2024 15:58:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 21:35:10.662181
- Title: Emotional Intelligence Through Artificial Intelligence : NLP and Deep Learning in the Analysis of Healthcare Texts
- Title(参考訳): 人工知能による感情知能 : 医療テキスト分析におけるNLPと深層学習
- Authors: Prashant Kumar Nag, Amit Bhagat, R. Vishnu Priya, Deepak kumar Khare,
- Abstract要約: 本論文は,医療関連テキストにおける感情評価における人工知能の利用に関する方法論的考察である。
我々は、感情分析を強化し、感情を分類し、患者の結果を予測するためにAIを利用する多くの研究を精査する。
AIの倫理的応用を保証すること、患者の機密性を保護すること、アルゴリズムの手続きにおける潜在的なバイアスに対処することを含む、継続的な課題がある。
- 参考スコア(独自算出の注目度): 1.9374282535132377
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This manuscript presents a methodical examination of the utilization of Artificial Intelligence in the assessment of emotions in texts related to healthcare, with a particular focus on the incorporation of Natural Language Processing and deep learning technologies. We scrutinize numerous research studies that employ AI to augment sentiment analysis, categorize emotions, and forecast patient outcomes based on textual information derived from clinical narratives, patient feedback on medications, and online health discussions. The review demonstrates noteworthy progress in the precision of algorithms used for sentiment classification, the prognostic capabilities of AI models for neurodegenerative diseases, and the creation of AI-powered systems that offer support in clinical decision-making. Remarkably, the utilization of AI applications has exhibited an enhancement in personalized therapy plans by integrating patient sentiment and contributing to the early identification of mental health disorders. There persist challenges, which encompass ensuring the ethical application of AI, safeguarding patient confidentiality, and addressing potential biases in algorithmic procedures. Nevertheless, the potential of AI to revolutionize healthcare practices is unmistakable, offering a future where healthcare is not only more knowledgeable and efficient but also more empathetic and centered around the needs of patients. This investigation underscores the transformative influence of AI on healthcare, delivering a comprehensive comprehension of its role in examining emotional content in healthcare texts and highlighting the trajectory towards a more compassionate approach to patient care. The findings advocate for a harmonious synergy between AI's analytical capabilities and the human aspects of healthcare.
- Abstract(参考訳): 本論文は,医療関連テキストにおける感情評価における人工知能の利用に関する方法論的考察であり,特に自然言語処理と深層学習技術の導入に注目したものである。
我々は、感情分析の強化、感情の分類、臨床物語からのテキスト情報、薬物に対する患者からのフィードバック、オンライン健康に関する議論に基づく患者結果の予測にAIを用いた多くの研究を精査する。
このレビューは、感情分類に使用されるアルゴリズムの精度、神経変性疾患のためのAIモデルの予後能力、臨床意思決定を支援するAI駆動システムの作成において、注目すべき進歩を示している。
注目すべきことに、AIアプリケーションの利用は、患者の感情を統合することでパーソナライズされた治療計画を強化し、精神疾患の早期発見に寄与している。
AIの倫理的応用を保証すること、患者の機密性を保護すること、アルゴリズムの手続きにおける潜在的なバイアスに対処することを含む、継続的な課題がある。
それでも、AIが医療プラクティスに革命をもたらす可能性はあり得ない。医療がより知識があり、効率的であるだけでなく、患者のニーズに焦点を絞った共感的な未来を提供する。
この調査は、医療におけるAIの変革的影響を強調し、医療テキストにおける感情的内容の調査におけるその役割を包括的に理解し、患者のケアに対するより思いやりのあるアプローチに向けた軌道を強調している。
この発見は、AIの分析能力と医療の人間の側面との調和した相乗効果を提唱している。
関連論文リスト
- Enhancing AI-Driven Psychological Consultation: Layered Prompts with Large Language Models [44.99833362998488]
我々は, GPT-4 のような大規模言語モデル (LLM) を用いて, 心理的コンサルテーションサービスの強化について検討する。
提案手法では,ユーザ入力に動的に適応する新しい階層型プロンプトシステムを提案する。
また,LLMの感情的インテリジェンスを高めるために,共感とシナリオに基づくプロンプトを開発する。
論文 参考訳(メタデータ) (2024-08-29T05:47:14Z) - AI-Driven Healthcare: A Survey on Ensuring Fairness and Mitigating Bias [2.398440840890111]
AIアプリケーションは、診断精度、治療のパーソナライゼーション、患者の結果予測を大幅に改善した。
これらの進歩は、実質的な倫理的・公正性の課題ももたらした。
これらのバイアスは、医療提供の格差をもたらし、異なる人口集団の診断精度と治療結果に影響を与える可能性がある。
論文 参考訳(メタデータ) (2024-07-29T02:39:17Z) - Intelligent Clinical Documentation: Harnessing Generative AI for Patient-Centric Clinical Note Generation [0.0]
本稿では,クリニカルドキュメンテーションプロセスの合理化のための生成AI(Artificial Intelligence)の可能性について検討する。
本稿では,自然言語処理 (NLP) と自動音声認識 (ASR) 技術を用いて患者と臨床の相互作用を転写するケーススタディを提案する。
この研究は、時間節約、ドキュメント品質の改善、患者中心のケアの改善など、このアプローチの利点を強調している。
論文 参考訳(メタデータ) (2024-05-28T16:43:41Z) - Designing Interpretable ML System to Enhance Trust in Healthcare: A Systematic Review to Proposed Responsible Clinician-AI-Collaboration Framework [13.215318138576713]
論文は、解釈可能なAIプロセス、方法、応用、および医療における実装の課題についてレビューする。
医療における堅牢な解釈可能性アプローチの重要な役割を包括的に理解することを目的としている。
論文 参考訳(メタデータ) (2023-11-18T12:29:18Z) - Foundation Metrics for Evaluating Effectiveness of Healthcare
Conversations Powered by Generative AI [38.497288024393065]
ジェネレーティブ・人工知能(Generative Artificial Intelligence)は、従来の医療をよりパーソナライズされ、効率的で、積極的なプロセスに変えることで、医療提供に革命をもたらす。
本稿では,医療における対話型対話モデルの評価に特に適用可能な最先端評価指標について検討する。
論文 参考訳(メタデータ) (2023-09-21T19:36:48Z) - Ensuring Trustworthy Medical Artificial Intelligence through Ethical and
Philosophical Principles [4.705984758887425]
AIベースのコンピュータ支援診断と治療ツールは、臨床レベルを合わせるか、あるいは臨床専門家を上回ることで、医療を民主化することができる。
このようなAIツールの民主化は、ケアコストを削減し、リソース割り当てを最適化し、ケアの質を向上させる。
AIをヘルスケアに統合することは、バイアス、透明性、自律性、責任、説明責任など、いくつかの倫理的および哲学的な懸念を提起する。
論文 参考訳(メタデータ) (2023-04-23T04:14:18Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Intelligent interactive technologies for mental health and well-being [70.1586005070678]
本論文では,既存ソリューションの将来展望を批判的に分析する。
特に、私たちは。
メンタルヘルスのための技術の概要を説明します。
提案された基準に照らして テクノロジーを批判的に分析する
これらの技術の設計見通しを提供するのです
論文 参考訳(メタデータ) (2021-05-11T19:04:21Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Edge Intelligence for Empowering IoT-based Healthcare Systems [42.909808437026136]
この記事では、スマートヘルスケアシステムにおけるAIとともに、エッジインテリジェント技術のメリットを強調します。
スマートヘルスケアシステムにおけるAIとエッジ技術の利用を促進するために、新しいスマートヘルスケアモデルが提案されている。
論文 参考訳(メタデータ) (2021-03-22T19:35:06Z) - Achievements and Challenges in Explaining Deep Learning based
Computer-Aided Diagnosis Systems [4.9449660544238085]
我々は、既知の疾患基準の検証のための説明可能なAIの開発における初期の成果について論じる。
我々は、臨床意思決定支援ツールとしてのAIの実践的応用の道に立つ、残る課題をいくつか強調する。
論文 参考訳(メタデータ) (2020-11-26T08:08:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。