論文の概要: Exploring the ChatGPT Approach for Bidirectional Traceability Problem
between Design Models and Code
- arxiv url: http://arxiv.org/abs/2309.14992v2
- Date: Tue, 10 Oct 2023 05:12:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 06:17:29.132465
- Title: Exploring the ChatGPT Approach for Bidirectional Traceability Problem
between Design Models and Code
- Title(参考訳): 設計モデルとコード間の双方向トレーサビリティ問題に対するChatGPTアプローチの探索
- Authors: Hideyuki Kanuka, Genta Koreki, Ryo Soga, Kazu Nishikawa
- Abstract要約: 本研究の目的は,ChatGPTが設計モデルやコードに特定の要求を理解し,統合する能力を示すことである。
この結果から,ChatGPTは自然言語要求から設計モデルやコードを生成することができることがわかった。
この研究は、設計モデルとコード間の双方向トレーサビリティを達成することは、ChatGPTを使って実現可能であると結論付けている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study explores the capabilities of Large Language Models, particularly
OpenAI's ChatGPT, in addressing the challenges associated with software
modeling, explicitly focusing on the bidirectional traceability problem between
design models and code. The objective of this study is to demonstrate the
proficiency of ChatGPT in understanding and integrating specific requirements
into design models and code. We also explore its potential to offer solutions
to the bidirectional traceability problem through a case study. The findings
indicate that ChatGPT is capable of generating design models and code from
natural language requirements, thereby bridging the gap between these
requirements and software modeling. Despite its limitations in suggesting a
specific method to resolve the problem using ChatGPT itself, it exhibited the
capacity to provide corrections to be consistent between design models and
code. As a result, the study concludes that achieving bidirectional
traceability between design models and code is feasible using ChatGPT.
- Abstract(参考訳): 本稿では,大規模言語モデル,特にOpenAIのChatGPTのソフトウェアモデリングに関わる課題に対処する能力について検討し,設計モデルとコード間の双方向トレーサビリティ問題に着目する。
本研究の目的は,ChatGPTが設計モデルやコードに特定の要求を理解し,統合する能力を示すことである。
双方向トレーサビリティ問題に対するソリューションを提供する可能性についても,ケーススタディを通じて検討する。
この結果から,ChatGPTは自然言語要求から設計モデルとコードを生成することができ,これらの要件とソフトウェアモデリングのギャップを埋めることができることがわかった。
ChatGPT自体を使って問題を解決する特定の方法を提案するという制限があったが、設計モデルとコードの間に一貫性のある修正を提供する能力を示した。
その結果,ChatGPTを用いた設計モデルとコード間の双方向トレーサビリティの実現が可能であることがわかった。
関連論文リスト
- Bridging Design Gaps: A Parametric Data Completion Approach With Graph Guided Diffusion Models [9.900586490845694]
本研究では, グラフ注意ネットワークと表層拡散モデルを利用して, 工学設計におけるパラメトリックデータの欠落を解消する生成的計算モデルを提案する。
提案手法は従来の手法,例えばMissForest, HotDeck, PPCA, TabCSDI よりも精度と多様性に優れていた。
グラフモデルは、設計問題の鍵となるアセンブリグラフから複雑なパラメトリック相互依存性を正確にキャプチャし、インプットするのに役立つ。
論文 参考訳(メタデータ) (2024-06-17T16:03:17Z) - Generative Design through Quality-Diversity Data Synthesis and Language Models [5.196236145367301]
エンジニアリングアプリケーションにおける2つの基本的な課題は、ハイパフォーマンスで多様なデータセットの取得と、生成された設計における正確な制約への固執である。
アーキテクチャ設計におけるこれらの課題に取り組むために,最適化,制約満足度,言語モデルを組み合わせた新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-16T11:30:08Z) - Model Generation with LLMs: From Requirements to UML Sequence Diagrams [9.114284818139069]
本稿では,NL要求から特定のモデル,すなわちシーケンス図を生成するChatGPTの能力について検討する。
本稿では,ChatGPTが生成した28種類の要求文書と異なるドメインのシーケンス図について検討する。
以上の結果から, モデルが標準に適合し, 合理的な理解可能性を示す一方で, 要求条件に対する完全性や正当性は, しばしば課題となることが示唆された。
論文 参考訳(メタデータ) (2024-04-09T15:07:25Z) - ChainLM: Empowering Large Language Models with Improved Chain-of-Thought Prompting [124.69672273754144]
CoT(Chain-of-Thought)のプロンプトにより,大規模言語モデル(LLM)の推論能力が向上する
既存のCoTアプローチは通常、単純な推論タスクに重点を置いており、結果として低品質で一貫性のないCoTプロンプトをもたらす。
優れたCoTプロンプトの自動生成のための新しいフレームワークであるCoTGeniusを紹介する。
論文 参考訳(メタデータ) (2024-03-21T11:34:26Z) - An Interpretable Ensemble of Graph and Language Models for Improving
Search Relevance in E-Commerce [22.449320058423886]
プラグアンドプレイグラフLanguage Model (PP-GLAM) を提案する。
このアプローチでは、均一なデータ処理パイプラインを備えたモジュラーフレームワークを使用します。
PP-GLAMは,実世界のマルチリンガル,マルチリージョンのeコマースデータセット上で,最先端のベースラインとプロプライエタリなモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-01T19:08:25Z) - Compositional Generative Inverse Design [69.22782875567547]
入力変数を設計して目的関数を最適化する逆設計は重要な問題である。
拡散モデルにより得られた学習エネルギー関数を最適化することにより、そのような逆例を避けることができることを示す。
N-body 相互作用タスクと2次元多面体設計タスクにおいて,実験時に学習した拡散モデルを構成することにより,初期状態と境界形状を設計できることを示す。
論文 参考訳(メタデータ) (2024-01-24T01:33:39Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
CoT(Chain-of- Thought)は、言語モデルのプロンプトとして、推論タスク全体で素晴らしいパフォーマンスを示す。
そこで本稿では,大規模言語モデルの推論プロセスを自動的にガイドする,新たなプロンプト手法であるアナログプロンプトを導入する。
論文 参考訳(メタデータ) (2023-10-03T00:57:26Z) - Unmasking the giant: A comprehensive evaluation of ChatGPT's proficiency in coding algorithms and data structures [0.6990493129893112]
本稿では,ChatGPTが入力した問題に対する正しい解を生成する能力,コード品質,コードによってスローされる実行時エラーの性質を評価する。
この種の状況において、ChatGPTコードがいかに間違っているか、いくつかの洞察を得るために、パスされたテストケースのパターンを調べます。
論文 参考訳(メタデータ) (2023-07-10T08:20:34Z) - Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation
Models [55.11367495777145]
ChatGPTは、多くのドメインにまたがる優れた会話能力と推論機能を備えた言語インターフェースを提供するため、分野横断の関心を集めている。
しかし、ChatGPTは言語で訓練されているため、視覚世界からの画像の処理や生成はできない。
Visual ChatGPTは、さまざまなVisual Foundation Modelsの助けを借りて、ChatGPTの視覚的役割を調べるための扉を開く。
論文 参考訳(メタデータ) (2023-03-08T15:50:02Z) - A Causal Framework to Quantify the Robustness of Mathematical Reasoning
with Language Models [81.15974174627785]
入力空間における直接的介入に対する頑健さと感度の観点から言語モデルの振舞いについて検討する。
しかし, GPT-3 Davinciモデル(175B)は, 他のGPTモデルと比較して, 頑健さと感度の両面で劇的な改善を実現している。
論文 参考訳(メタデータ) (2022-10-21T15:12:37Z) - Switchable Representation Learning Framework with Self-compatibility [50.48336074436792]
自己整合性(SFSC)を考慮した交換可能な表現学習フレームワークを提案する。
SFSCは1つのトレーニングプロセスを通じて、異なる能力を持つ一連の互換性のあるサブモデルを生成する。
SFSCは評価データセット上で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-06-16T16:46:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。