Residual Diffusion Modeling for Km-scale Atmospheric Downscaling
- URL: http://arxiv.org/abs/2309.15214v3
- Date: Sun, 10 Dec 2023 03:17:29 GMT
- Title: Residual Diffusion Modeling for Km-scale Atmospheric Downscaling
- Authors: Morteza Mardani, Noah Brenowitz, Yair Cohen, Jaideep Pathak, Chieh-Yu
Chen, Cheng-Chin Liu, Arash Vahdat, Karthik Kashinath, Jan Kautz, and Mike
Pritchard
- Abstract summary: A cost-effective downscaling model is trained from a high-resolution 2-km weather model over Taiwan.
textitCorrDiff exhibits skillful RMSE and CRPS and faithfully recovers spectra and distributions even for extremes.
Downscaling global forecasts successfully retains many of these benefits, foreshadowing the potential of end-to-end, global-to-km-scales machine learning weather predictions.
- Score: 51.061954281398116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predictions of weather hazard require expensive km-scale simulations driven
by coarser global inputs. Here, a cost-effective stochastic downscaling model
is trained from a high-resolution 2-km weather model over Taiwan conditioned on
25-km ERA5 reanalysis. To address the multi-scale machine learning challenges
of weather data, we employ a two-step approach Corrector Diffusion
(\textit{CorrDiff}), where a UNet prediction of the mean is corrected by a
diffusion step. Akin to Reynolds decomposition in fluid dynamics, this isolates
generative learning to the stochastic scales. \textit{CorrDiff} exhibits
skillful RMSE and CRPS and faithfully recovers spectra and distributions even
for extremes. Case studies of coherent weather phenomena reveal appropriate
multivariate relationships reminiscent of learnt physics: the collocation of
intense rainfall and sharp gradients in fronts and extreme winds and rainfall
bands near the eyewall of typhoons. Downscaling global forecasts successfully
retains many of these benefits, foreshadowing the potential of end-to-end,
global-to-km-scales machine learning weather predictions.
Related papers
- Appa: Bending Weather Dynamics with Latent Diffusion Models for Global Data Assimilation [4.430758443755128]
Appa is a score-based data assimilation model producing global atmospheric trajectories at 0.25-degree resolution and 1-hour intervals.
Our results establish latent score-based data assimilation as a promising foundation for future global atmospheric modeling systems.
arXiv Detail & Related papers (2025-04-25T22:14:29Z) - Kilometer-Scale Convection Allowing Model Emulation using Generative Diffusion Modeling [19.340636269420692]
Storm-scale convection-allowing models (CAMs) are an important tool for predicting the evolution of thunderstorms and mesoscale convective systems.
Deep learning models have thus far not proven skilful at km-scale atmospheric simulation.
We present a generative diffusion model called StormCast, which emulates the high-resolution rapid refresh (HRRR) model-NOAA's state-of-the-art 3km operational CAM.
arXiv Detail & Related papers (2024-08-20T15:56:01Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Efficient Subseasonal Weather Forecast using Teleconnection-informed
Transformers [29.33938664834226]
Subseasonal forecasting is pivotal for agriculture, water resource management, and early warning of disasters.
Recent advances in machine learning have revolutionized weather forecasting by achieving competitive predictive skills to numerical models.
However, training such foundation models requires thousands of GPU days, which causes substantial carbon emissions.
arXiv Detail & Related papers (2024-01-31T14:27:35Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Rethinking Real-world Image Deraining via An Unpaired Degradation-Conditioned Diffusion Model [51.49854435403139]
We propose RainDiff, the first real-world image deraining paradigm based on diffusion models.
We introduce a stable and non-adversarial unpaired cycle-consistent architecture that can be trained, end-to-end, with only unpaired data for supervision.
We also propose a degradation-conditioned diffusion model that refines the desired output via a diffusive generative process conditioned by learned priors of multiple rain degradations.
arXiv Detail & Related papers (2023-01-23T13:34:01Z) - Predictive World Models from Real-World Partial Observations [66.80340484148931]
We present a framework for learning a probabilistic predictive world model for real-world road environments.
While prior methods require complete states as ground truth for learning, we present a novel sequential training method to allow HVAEs to learn to predict complete states from partially observed states only.
arXiv Detail & Related papers (2023-01-12T02:07:26Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
Generative adversarial networks (GANs) have been demonstrated by the computer vision community to be successful at super-resolution problems.
We show that GANs and VAE-GANs can match the statistical properties of state-of-the-art pointwise post-processing methods whilst creating high-resolution, spatially coherent precipitation maps.
arXiv Detail & Related papers (2022-04-05T07:19:42Z) - Increasing the accuracy and resolution of precipitation forecasts using
deep generative models [3.8073142980733]
We train a conditional Generative Adversarial Network -- coined CorrectorGAN -- to produce ensembles of high-resolution, bias-corrected forecasts.
CorrectorGAN, once trained, produces predictions in seconds on a single machine.
Results raise exciting questions about the necessity of regional models, and whether data-driven downscaling and correction methods can be transferred to data-poor regions.
arXiv Detail & Related papers (2022-03-23T09:45:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.