BASED: Bundle-Adjusting Surgical Endoscopic Dynamic Video Reconstruction using Neural Radiance Fields
- URL: http://arxiv.org/abs/2309.15329v2
- Date: Tue, 6 Aug 2024 19:51:49 GMT
- Title: BASED: Bundle-Adjusting Surgical Endoscopic Dynamic Video Reconstruction using Neural Radiance Fields
- Authors: Shreya Saha, Zekai Liang, Shan Lin, Jingpei Lu, Michael Yip, Sainan Liu,
- Abstract summary: Reconstruction of deformable scenes from endoscopic videos is important for many applications.
Our work adopts the Neural Radiance Fields (NeRF) approach to learning 3D implicit representations of scenes.
We demonstrate this approach on endoscopic surgical scenes from robotic surgery.
- Score: 5.773068487121897
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstruction of deformable scenes from endoscopic videos is important for many applications such as intraoperative navigation, surgical visual perception, and robotic surgery. It is a foundational requirement for realizing autonomous robotic interventions for minimally invasive surgery. However, previous approaches in this domain have been limited by their modular nature and are confined to specific camera and scene settings. Our work adopts the Neural Radiance Fields (NeRF) approach to learning 3D implicit representations of scenes that are both dynamic and deformable over time, and furthermore with unknown camera poses. We demonstrate this approach on endoscopic surgical scenes from robotic surgery. This work removes the constraints of known camera poses and overcomes the drawbacks of the state-of-the-art unstructured dynamic scene reconstruction technique, which relies on the static part of the scene for accurate reconstruction. Through several experimental datasets, we demonstrate the versatility of our proposed model to adapt to diverse camera and scene settings, and show its promise for both current and future robotic surgical systems.
Related papers
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
We present a novel approach for 3D/2D intraoperative registration during neurosurgery via cross-modal inverse neural rendering.
Our approach separates implicit neural representation into two components, handling anatomical structure preoperatively and appearance intraoperatively.
We tested our method on retrospective patients' data from clinical cases, showing that our method outperforms state-of-the-art while meeting current clinical standards for registration.
arXiv Detail & Related papers (2024-09-18T13:40:59Z) - SurgicalGaussian: Deformable 3D Gaussians for High-Fidelity Surgical Scene Reconstruction [17.126895638077574]
Dynamic reconstruction of deformable tissues in endoscopic video is a key technology for robot-assisted surgery.
NeRFs struggle to capture intricate details of objects in the scene.
Our network outperforms existing method on many aspects, including rendering quality, rendering speed and GPU usage.
arXiv Detail & Related papers (2024-07-06T09:31:30Z) - Vision-Based Neurosurgical Guidance: Unsupervised Localization and Camera-Pose Prediction [41.91807060434709]
Localizing oneself during endoscopic procedures can be problematic due to the lack of distinguishable textures and landmarks.
We present a deep learning method based on anatomy recognition, that constructs a surgical path in an unsupervised manner from surgical videos.
arXiv Detail & Related papers (2024-05-15T14:09:11Z) - Creating a Digital Twin of Spinal Surgery: A Proof of Concept [68.37190859183663]
Surgery digitalization is the process of creating a virtual replica of real-world surgery.
We present a proof of concept (PoC) for surgery digitalization that is applied to an ex-vivo spinal surgery.
We employ five RGB-D cameras for dynamic 3D reconstruction of the surgeon, a high-end camera for 3D reconstruction of the anatomy, an infrared stereo camera for surgical instrument tracking, and a laser scanner for 3D reconstruction of the operating room and data fusion.
arXiv Detail & Related papers (2024-03-25T13:09:40Z) - FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos [79.50191812646125]
Reconstruction of endoscopic scenes is an important asset for various medical applications, from post-surgery analysis to educational training.
We adress the challenging setup of a moving endoscope within a highly dynamic environment of deforming tissue.
We propose an implicit scene separation into multiple overlapping 4D neural radiance fields (NeRFs) and a progressive optimization scheme jointly optimizing for reconstruction and camera poses from scratch.
This improves the ease-of-use and allows to scale reconstruction capabilities in time to process surgical videos of 5,000 frames and more; an improvement of more than ten times compared to the state of the art while being agnostic to external tracking information
arXiv Detail & Related papers (2024-03-18T19:13:02Z) - SAMSNeRF: Segment Anything Model (SAM) Guides Dynamic Surgical Scene
Reconstruction by Neural Radiance Field (NeRF) [4.740415113160021]
We propose a novel approach called SAMSNeRF that combines Segment Anything Model (SAM) and Neural Radiance Field (NeRF) techniques.
Our experimental results on public endoscopy surgical videos demonstrate that our approach successfully reconstructs high-fidelity dynamic surgical scenes.
arXiv Detail & Related papers (2023-08-22T20:31:00Z) - Live image-based neurosurgical guidance and roadmap generation using
unsupervised embedding [53.992124594124896]
We present a method for live image-only guidance leveraging a large data set of annotated neurosurgical videos.
A generated roadmap encodes the common anatomical paths taken in surgeries in the training set.
We trained and evaluated the proposed method with a data set of 166 transsphenoidal adenomectomy procedures.
arXiv Detail & Related papers (2023-03-31T12:52:24Z) - DynIBaR: Neural Dynamic Image-Based Rendering [79.44655794967741]
We address the problem of synthesizing novel views from a monocular video depicting a complex dynamic scene.
We adopt a volumetric image-based rendering framework that synthesizes new viewpoints by aggregating features from nearby views.
We demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets.
arXiv Detail & Related papers (2022-11-20T20:57:02Z) - Neural Rendering for Stereo 3D Reconstruction of Deformable Tissues in
Robotic Surgery [18.150476919815382]
Reconstruction of the soft tissues in robotic surgery from endoscopic stereo videos is important for many applications.
Previous works on this task mainly rely on SLAM-based approaches, which struggle to handle complex surgical scenes.
Inspired by recent progress in neural rendering, we present a novel framework for deformable tissue reconstruction.
arXiv Detail & Related papers (2022-06-30T13:06:27Z) - E-DSSR: Efficient Dynamic Surgical Scene Reconstruction with
Transformer-based Stereoscopic Depth Perception [15.927060244702686]
We present an efficient reconstruction pipeline for highly dynamic surgical scenes that runs at 28 fps.
Specifically, we design a transformer-based stereoscopic depth perception for efficient depth estimation.
We evaluate the proposed pipeline on two datasets, the public Hamlyn Centre Endoscopic Video dataset and our in-house DaVinci robotic surgery dataset.
arXiv Detail & Related papers (2021-07-01T05:57:41Z) - Multimodal Semantic Scene Graphs for Holistic Modeling of Surgical
Procedures [70.69948035469467]
We take advantage of the latest computer vision methodologies for generating 3D graphs from camera views.
We then introduce the Multimodal Semantic Graph Scene (MSSG) which aims at providing unified symbolic and semantic representation of surgical procedures.
arXiv Detail & Related papers (2021-06-09T14:35:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.