Vision-Based Neurosurgical Guidance: Unsupervised Localization and Camera-Pose Prediction
- URL: http://arxiv.org/abs/2405.09355v1
- Date: Wed, 15 May 2024 14:09:11 GMT
- Title: Vision-Based Neurosurgical Guidance: Unsupervised Localization and Camera-Pose Prediction
- Authors: Gary Sarwin, Alessandro Carretta, Victor Staartjes, Matteo Zoli, Diego Mazzatenta, Luca Regli, Carlo Serra, Ender Konukoglu,
- Abstract summary: Localizing oneself during endoscopic procedures can be problematic due to the lack of distinguishable textures and landmarks.
We present a deep learning method based on anatomy recognition, that constructs a surgical path in an unsupervised manner from surgical videos.
- Score: 41.91807060434709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Localizing oneself during endoscopic procedures can be problematic due to the lack of distinguishable textures and landmarks, as well as difficulties due to the endoscopic device such as a limited field of view and challenging lighting conditions. Expert knowledge shaped by years of experience is required for localization within the human body during endoscopic procedures. In this work, we present a deep learning method based on anatomy recognition, that constructs a surgical path in an unsupervised manner from surgical videos, modelling relative location and variations due to different viewing angles. At inference time, the model can map an unseen video's frames on the path and estimate the viewing angle, aiming to provide guidance, for instance, to reach a particular destination. We test the method on a dataset consisting of surgical videos of transsphenoidal adenomectomies, as well as on a synthetic dataset. An online tool that lets researchers upload their surgical videos to obtain anatomy detections and the weights of the trained YOLOv7 model are available at: https://surgicalvision.bmic.ethz.ch.
Related papers
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
We present a novel approach for 3D/2D intraoperative registration during neurosurgery via cross-modal inverse neural rendering.
Our approach separates implicit neural representation into two components, handling anatomical structure preoperatively and appearance intraoperatively.
We tested our method on retrospective patients' data from clinical cases, showing that our method outperforms state-of-the-art while meeting current clinical standards for registration.
arXiv Detail & Related papers (2024-09-18T13:40:59Z) - SURGIVID: Annotation-Efficient Surgical Video Object Discovery [42.16556256395392]
We propose an annotation-efficient framework for the semantic segmentation of surgical scenes.
We employ image-based self-supervised object discovery to identify the most salient tools and anatomical structures in surgical videos.
Our unsupervised setup reinforced with only 36 annotation labels indicates comparable localization performance with fully-supervised segmentation models.
arXiv Detail & Related papers (2024-09-12T07:12:20Z) - FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos [79.50191812646125]
Reconstruction of endoscopic scenes is an important asset for various medical applications, from post-surgery analysis to educational training.
We adress the challenging setup of a moving endoscope within a highly dynamic environment of deforming tissue.
We propose an implicit scene separation into multiple overlapping 4D neural radiance fields (NeRFs) and a progressive optimization scheme jointly optimizing for reconstruction and camera poses from scratch.
This improves the ease-of-use and allows to scale reconstruction capabilities in time to process surgical videos of 5,000 frames and more; an improvement of more than ten times compared to the state of the art while being agnostic to external tracking information
arXiv Detail & Related papers (2024-03-18T19:13:02Z) - BASED: Bundle-Adjusting Surgical Endoscopic Dynamic Video Reconstruction using Neural Radiance Fields [5.773068487121897]
Reconstruction of deformable scenes from endoscopic videos is important for many applications.
Our work adopts the Neural Radiance Fields (NeRF) approach to learning 3D implicit representations of scenes.
We demonstrate this approach on endoscopic surgical scenes from robotic surgery.
arXiv Detail & Related papers (2023-09-27T00:20:36Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose
Estimation of Surgical Instruments [66.74633676595889]
We present a multi-camera capture setup consisting of static and head-mounted cameras.
Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre.
Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments.
arXiv Detail & Related papers (2023-05-05T13:42:19Z) - Learning How To Robustly Estimate Camera Pose in Endoscopic Videos [5.073761189475753]
We propose a solution for stereo endoscopes that estimates depth and optical flow to minimize two geometric losses for camera pose estimation.
Most importantly, we introduce two learned adaptive per-pixel weight mappings that balance contributions according to the input image content.
We validate our approach on the publicly available SCARED dataset and introduce a new in-vivo dataset, StereoMIS.
arXiv Detail & Related papers (2023-04-17T07:05:01Z) - Live image-based neurosurgical guidance and roadmap generation using
unsupervised embedding [53.992124594124896]
We present a method for live image-only guidance leveraging a large data set of annotated neurosurgical videos.
A generated roadmap encodes the common anatomical paths taken in surgeries in the training set.
We trained and evaluated the proposed method with a data set of 166 transsphenoidal adenomectomy procedures.
arXiv Detail & Related papers (2023-03-31T12:52:24Z) - A Temporal Learning Approach to Inpainting Endoscopic Specularities and
Its effect on Image Correspondence [13.25903945009516]
We propose using a temporal generative adversarial network (GAN) to inpaint the hidden anatomy under specularities.
This is achieved using in-vivo data of gastric endoscopy (Hyper-Kvasir) in a fully unsupervised manner.
We also assess the effect of our method in computer vision tasks that underpin 3D reconstruction and camera motion estimation.
arXiv Detail & Related papers (2022-03-31T13:14:00Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.