論文の概要: DeepRepViz: Identifying Confounders in Deep Learning Model Predictions
- arxiv url: http://arxiv.org/abs/2309.15551v2
- Date: Fri, 15 Mar 2024 17:01:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 03:41:25.495764
- Title: DeepRepViz: Identifying Confounders in Deep Learning Model Predictions
- Title(参考訳): DeepRepViz: ディープラーニングモデル予測で共同創業者を特定する
- Authors: Roshan Prakash Rane, JiHoon Kim, Arjun Umesha, Didem Stark, Marc-André Schulz, Kerstin Ritter,
- Abstract要約: DeepRepVizは、ディープラーニング(DL)モデルの予測において、共同創設者を特定するように設計されたフレームワークである。
この枠組みを大規模ニューロイメージングデータセットで検証する。
- 参考スコア(独自算出の注目度): 12.986625348993645
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep Learning (DL) models have gained popularity in neuroimaging studies for predicting psychological behaviors, cognitive traits, and brain pathologies. However, these models can be biased by confounders such as age, sex, or imaging artifacts from the acquisition process. To address this, we introduce 'DeepRepViz', a two-part framework designed to identify confounders in DL model predictions. The first component is a visualization tool that can be used to qualitatively examine the final latent representation of the DL model. The second component is a metric called 'Con-score' that quantifies the confounder risk associated with a variable, using the final latent representation of the DL model. We demonstrate the effectiveness of the Con-score using a simple simulated setup by iteratively altering the strength of a simulated confounder and observing the corresponding change in the Con-score. Next, we validate the DeepRepViz framework on a large-scale neuroimaging dataset (n=12000) by performing three MRI-phenotype prediction tasks that include (a) predicting chronic alcohol users, (b) classifying participant sex, and (c) predicting performance speed on a cognitive task called 'trail making'. DeepRepViz identifies sex as a significant confounder in the DL model predicting chronic alcohol users (Con-score=0.35) and age as a confounder in the model predicting cognitive task performance (Con-score=0.3). In conclusion, the DeepRepViz framework provides a systematic approach to test for potential confounders such as age, sex, and imaging artifacts and improves the transparency of DL models for neuroimaging studies.
- Abstract(参考訳): 深層学習(DL)モデルは、心理的行動、認知特性、脳病理を予測する神経画像研究で人気を博している。
しかし、これらのモデルは、取得プロセスから年齢、性別、画像のアーティファクトなどの共同創設者によってバイアスを受けることができる。
これを解決するために,DLモデルの予測において,共同創設者を特定するために設計された2部構成のフレームワークである"DeepRepViz"を紹介した。
最初のコンポーネントは視覚化ツールで、DLモデルの最終的な潜在表現を定性的に調べることができる。
第2のコンポーネントは'Con-score'と呼ばれるメトリクスで、DLモデルの最終的な潜在表現を使用して、変数に関連する共同創設者のリスクを定量化する。
シミュレーション共同設立者の強度を反復的に変化させ,コンスコアの変化を観察することにより,簡単なシミュレーション設定によるコンスコアの有効性を実証する。
次に,大規模なニューロイメージングデータセット(n=12000)上のDeepRepVizフレームワークを検証する。
(a)慢性アルコール使用者の予測
(b)受講者セックスの分類、及び
(c)「皿作り」という認知タスクにおける性能速度の予測。
DeepRepVizは、性は慢性アルコールユーザー(Con-score=0.35)を予測するDLモデルの重要な共同創設者であり、認知タスクのパフォーマンスを予測するモデルの共同創設者である(Con-score=0.3)。
結論として、DeepRepVizフレームワークは、年齢、性別、画像アーティファクトといった潜在的な共同創設者をテストするための体系的なアプローチを提供し、ニューロイメージング研究のためのDLモデルの透明性を向上させる。
関連論文リスト
- Closely Interactive Human Reconstruction with Proxemics and Physics-Guided Adaption [64.07607726562841]
既存の人間再建アプローチは主に、正確なポーズの回復や侵入を避けることに焦点を当てている。
本研究では,モノクロ映像から密に対話的な人間を再構築する作業に取り組む。
本稿では,視覚情報の欠如を補うために,確率的行動や物理からの知識を活用することを提案する。
論文 参考訳(メタデータ) (2024-04-17T11:55:45Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - PIGNet2: A Versatile Deep Learning-based Protein-Ligand Interaction
Prediction Model for Binding Affinity Scoring and Virtual Screening [0.0]
タンパク質-リガンド相互作用の予測(PLI)は、薬物発見において重要な役割を果たす。
結合親和性を正確に評価し、効率的な仮想スクリーニングを行う汎用モデルの開発は依然として課題である。
本稿では、物理インフォームドグラフニューラルネットワークと組み合わせて、新しいデータ拡張戦略を導入することにより、実現可能なソリューションを提案する。
論文 参考訳(メタデータ) (2023-07-03T14:46:49Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
ウェブ検索のための新しいグラフ強調クリックモデル(GraphCM)を提案する。
セッション内情報とセッション間情報の両方を、スパーシリティ問題とコールドスタート問題に活用する。
論文 参考訳(メタデータ) (2022-06-17T08:32:43Z) - Psychotic Relapse Prediction in Schizophrenia Patients using A Mobile
Sensing-based Supervised Deep Learning Model [1.4922888318989764]
モバイルセンシングに基づく行動変化のモデリングは、統合失調症患者の時間的介入に対する精神遅滞を予測できる。
深層学習モデルは、予測に関連する潜在行動の特徴をモデル化することによって、再学習予測のための既存の非深層学習モデルを補完することができる。
本稿では,リラプス予測のためのニューラルネットワークモデルであるRelapsePredNetを提案する。
論文 参考訳(メタデータ) (2022-05-24T17:34:19Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Performance or Trust? Why Not Both. Deep AUC Maximization with
Self-Supervised Learning for COVID-19 Chest X-ray Classifications [72.52228843498193]
ディープラーニングモデルのトレーニングでは、パフォーマンスと信頼の間に妥協をしなければなりません。
本研究は、新型コロナウイルス患者のコンピュータ支援スクリーニングのための自己教師型学習と新しい代理損失を統合したものである。
論文 参考訳(メタデータ) (2021-12-14T21:16:52Z) - Evaluating deep transfer learning for whole-brain cognitive decoding [11.898286908882561]
転送学習(TL)は、少数のサンプルを持つデータセットにおける深層学習(DL)モデルの性能向上に適している。
本稿では,全脳機能型磁気共鳴画像(fMRI)データから認識状態の復号化にDLモデルを適用するためのTLを評価した。
論文 参考訳(メタデータ) (2021-11-01T15:44:49Z) - Human-Understandable Decision Making for Visual Recognition [30.30163407674527]
モデル学習プロセスに人間の知覚の優先順位を組み込むことにより,深層ニューラルネットワークを訓練する新たなフレームワークを提案する。
提案モデルの有効性を2つの古典的視覚認識タスクで評価する。
論文 参考訳(メタデータ) (2021-03-05T02:07:33Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Learning Realistic Patterns from Unrealistic Stimuli: Generalization and
Data Anonymization [0.5091527753265949]
本研究は、匿名化されたデータ合成において、サードパーティがそのようなプライベートデータから恩恵を受けられるような、シンプルかつ非従来的なアプローチについて検討する。
オープンおよび大規模臨床研究の睡眠モニタリングデータを用いて,(1)エンドユーザーが睡眠時無呼吸検出のためにカスタマイズされた分類モデルを作成し,有効活用できるかどうかを評価し,(2)研究参加者の身元を保護した。
論文 参考訳(メタデータ) (2020-09-21T16:31:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。