論文の概要: Pulsar Classification: Comparing Quantum Convolutional Neural Networks
and Quantum Support Vector Machines
- arxiv url: http://arxiv.org/abs/2309.15592v1
- Date: Wed, 27 Sep 2023 11:46:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-28 13:52:14.273352
- Title: Pulsar Classification: Comparing Quantum Convolutional Neural Networks
and Quantum Support Vector Machines
- Title(参考訳): pulsar分類:量子畳み込みニューラルネットワークと量子サポートベクターマシンの比較
- Authors: Donovan Slabbert, Matt Lourens and Francesco Petruccione
- Abstract要約: パルサーのバイナリ分類には、量子カーネル支援支援ベクトルマシン(QSVM)と量子畳み込みニューラルネットワーク(QCNN)が適用される。
QCNNは、トレーニングと予測に要する時間に関してQSVMよりも優れていますが、現在のNISQ時代デバイスが考慮され、比較に含まれるノイズが優先される場合、QSVMが好まれます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Well-known quantum machine learning techniques, namely quantum kernel
assisted support vector machines (QSVMs) and quantum convolutional neural
networks (QCNNs), are applied to the binary classification of pulsars. In this
comparitive study it is illustrated with simulations that both quantum methods
successfully achieve effective classification of the HTRU-2 data set that
connects pulsar class labels to eight separate features. QCNNs outperform the
QSVMs with respect to time taken to train and predict, however, if the current
NISQ era devices are considered and noise included in the comparison, then
QSVMs are preferred. QSVMs also perform better overall compared to QCNNs when
performance metrics are used to evaluate both methods. Classical methods are
also implemented to serve as benchmark for comparison with the quantum
approaches.
- Abstract(参考訳): 量子カーネル支援支援ベクトルマシン(QSVM)と量子畳み込みニューラルネットワーク(QCNN)という、よく知られた量子機械学習技術がパルサーのバイナリ分類に適用されている。
この比較研究では、両方の量子法がパルサークラスラベルを8つの異なる特徴に接続するHTRU-2データセットの効果的な分類に成功していることをシミュレーションで示している。
QCNNは、トレーニングと予測に要する時間に関してQSVMよりも優れていますが、現在のNISQ時代のデバイスが考慮され、比較に含まれるノイズが優先されます。
QSVMは、両方のメソッドを評価するためにパフォーマンスメトリクスを使用する場合、QCNNよりも全体的なパフォーマンスも向上する。
古典的手法は量子的アプローチと比較するためのベンチマークとして実装されている。
関連論文リスト
- Benchmarking Quantum Convolutional Neural Networks for Classification and Data Compression Tasks [0.4379805041989628]
量子畳み込みニューラルネットワーク(QCNN)は、量子機械学習タスクの有望なモデルとして登場した。
本稿では,量子基底状態の位相を分類するハードウェア効率アンサッツ(HEA)と比較してQCNNの性能について検討する。
論文 参考訳(メタデータ) (2024-11-20T17:17:09Z) - Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
量子ニューロモーフィックコンピューティング(QNC)は、量子計算とニューラルネットワークを融合して、量子機械学習(QML)のためのスケーラブルで耐雑音性のあるアルゴリズムを作成する
QNCの中核は量子パーセプトロン(QP)であり、相互作用する量子ビットのアナログダイナミクスを利用して普遍的な量子計算を可能にする。
論文 参考訳(メタデータ) (2024-11-13T23:56:20Z) - Quantum support vector machines for classification and regression on a trapped-ion quantum computer [9.736685719039599]
量子支援ベクトル分類(QSVC)と量子支援ベクトル回帰(QSVR)に基づく量子機械学習モデルについて検討する。
本稿では,これらのモデルについて,ノイズと非ノイズの双方を考慮した量子回路シミュレータとIonQ Harmony量子プロセッサを用いて検討する。
分類タスクでは, 捕捉イオン量子コンピュータの4量子ビットを用いたQSVCモデルの性能は, ノイズレス量子回路シミュレーションで得られたものと同等であった。
論文 参考訳(メタデータ) (2023-07-05T08:06:41Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
SAM(Self-Attention Mechanism)は機能の内部接続を捉えるのに長けている。
短期量子デバイスにおける画像分類タスクに対して,新しい量子自己注意ネットワーク(QSAN)を提案する。
論文 参考訳(メタデータ) (2022-07-14T12:22:51Z) - When BERT Meets Quantum Temporal Convolution Learning for Text
Classification in Heterogeneous Computing [75.75419308975746]
本研究は,変分量子回路に基づく垂直連合学習アーキテクチャを提案し,テキスト分類のための量子化事前学習BERTモデルの競争性能を実証する。
目的分類実験により,提案したBERT-QTCモデルにより,SnipsおよびATIS音声言語データセットの競合実験結果が得られた。
論文 参考訳(メタデータ) (2022-02-17T09:55:21Z) - Investigation of Quantum Support Vector Machine for Classification in
NISQ era [0.0]
本稿では,量子支援ベクトルマシン(QSVM)アルゴリズムとその回路バージョンについて検討する。
量子回路におけるトレーニングおよびテストデータサンプルを符号化し,QSVM回路実装手法の効率性を計算する。
我々は、現在のNISQデバイスにQSVMアルゴリズムを適用する際に直面する技術的困難を強調した。
論文 参考訳(メタデータ) (2021-12-13T18:59:39Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
ハイブリッドQCNNは、標準ニューラルネットワーク内に量子層を導入することで、CNNの古典的なアーキテクチャを豊かにする。
この研究で提案された新しいQCNNは、地球観測(EO)のユースケースとして選択された土地利用・土地被覆(LULC)分類に適用される。
マルチクラス分類の結果は,QCNNの性能が従来の性能よりも高いことを示すことによって,提案手法の有効性を証明した。
論文 参考訳(メタデータ) (2021-09-20T12:41:50Z) - Quantum convolutional neural network for classical data classification [0.8057006406834467]
古典データ分類のための完全パラメータ化量子畳み込みニューラルネットワーク(QCNN)をベンチマークする。
本稿では,CNNにインスパイアされた量子ニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T06:48:34Z) - Higgs analysis with quantum classifiers [0.0]
我々は、$tbartH(bbarb)$分類問題に対する2つの量子分類器モデルを開発した。
この結果は、量子機械学習(QML)メソッドが類似あるいはより良い性能を持つことができるという概念の証明として役立ちます。
論文 参考訳(メタデータ) (2021-04-15T18:01:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。