論文の概要: Benchmarking Quantum Convolutional Neural Networks for Classification and Data Compression Tasks
- arxiv url: http://arxiv.org/abs/2411.13468v1
- Date: Wed, 20 Nov 2024 17:17:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:11:48.939369
- Title: Benchmarking Quantum Convolutional Neural Networks for Classification and Data Compression Tasks
- Title(参考訳): 分類・データ圧縮タスクのための量子畳み込みニューラルネットワークのベンチマーク
- Authors: Jun Yong Khoo, Chee Kwan Gan, Wenjun Ding, Stefano Carrazza, Jun Ye, Jian Feng Kong,
- Abstract要約: 量子畳み込みニューラルネットワーク(QCNN)は、量子機械学習タスクの有望なモデルとして登場した。
本稿では,量子基底状態の位相を分類するハードウェア効率アンサッツ(HEA)と比較してQCNNの性能について検討する。
- 参考スコア(独自算出の注目度): 0.4379805041989628
- License:
- Abstract: Quantum Convolutional Neural Networks (QCNNs) have emerged as promising models for quantum machine learning tasks, including classification and data compression. This paper investigates the performance of QCNNs in comparison to the hardware-efficient ansatz (HEA) for classifying the phases of quantum ground states of the transverse field Ising model and the XXZ model. Various system sizes, including 4, 8, and 16 qubits, through simulation were examined. Additionally, QCNN and HEA-based autoencoders were implemented to assess their capabilities in compressing quantum states. The results show that QCNN with RY gates can be trained faster due to fewer trainable parameters while matching the performance of HEAs.
- Abstract(参考訳): 量子畳み込みニューラルネットワーク(QCNN)は、分類やデータ圧縮を含む量子機械学習タスクの有望なモデルとして登場した。
本稿では,QCNNの性能を,横フィールドIsingモデルとXXZモデルの量子基底状態の位相を分類するためのハードウェア効率アンサッツ(HEA)と比較して検討する。
シミュレーションにより,4,8,16量子ビットを含む様々なシステムサイズについて検討した。
さらに、量子状態の圧縮能力を評価するためにQCNNとHEAベースのオートエンコーダが実装された。
その結果, RYゲートを用いたQCNNは, HEAの性能に適合しながら, トレーニング可能なパラメータが少ないため, より高速にトレーニングできることがわかった。
関連論文リスト
- Federated Quantum-Train with Batched Parameter Generation [3.697453416360906]
我々は、QTモデルをフェデレートラーニングに統合する、Federated Quantum-Train(QT)フレームワークを紹介する。
提案手法は, 一般化誤差を低減しつつ, 量子ビット使用量を19から8キュービットまで大幅に削減する。
論文 参考訳(メタデータ) (2024-09-04T14:39:11Z) - Quantum support vector machines for classification and regression on a trapped-ion quantum computer [9.736685719039599]
量子支援ベクトル分類(QSVC)と量子支援ベクトル回帰(QSVR)に基づく量子機械学習モデルについて検討する。
本稿では,これらのモデルについて,ノイズと非ノイズの双方を考慮した量子回路シミュレータとIonQ Harmony量子プロセッサを用いて検討する。
分類タスクでは, 捕捉イオン量子コンピュータの4量子ビットを用いたQSVCモデルの性能は, ノイズレス量子回路シミュレーションで得られたものと同等であった。
論文 参考訳(メタデータ) (2023-07-05T08:06:41Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
本稿では,量子最適化アルゴリズムを用いて量子ニューラルネットワーク(QNN)のトレーニングを行う方法について検討する。
本稿では、変分量子ニューラルネットワーク(VQNN)と呼ばれる入力層として、変分パラメータ化回路を組み込んだQNN構造を作成する。
VQNNは、MNIST桁認識(複雑でない)とクラック画像分類データセットで実験され、QNNよりも少ない時間で、適切なトレーニング精度で計算を収束させる。
論文 参考訳(メタデータ) (2023-03-10T11:24:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Quantum-inspired Complex Convolutional Neural Networks [17.65730040410185]
我々は、より豊かな表現能力とより良い非線形性を持つ複素数値重みを利用することにより、量子刺激ニューロンを改善した。
我々は、高次元データを処理できる量子インスパイアされた畳み込みニューラルネットワーク(QICNN)のモデルを描く。
5つのQICNNの分類精度をMNISTとCIFAR-10データセットで検証した。
論文 参考訳(メタデータ) (2021-10-31T03:10:48Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
ハイブリッドQCNNは、標準ニューラルネットワーク内に量子層を導入することで、CNNの古典的なアーキテクチャを豊かにする。
この研究で提案された新しいQCNNは、地球観測(EO)のユースケースとして選択された土地利用・土地被覆(LULC)分類に適用される。
マルチクラス分類の結果は,QCNNの性能が従来の性能よりも高いことを示すことによって,提案手法の有効性を証明した。
論文 参考訳(メタデータ) (2021-09-20T12:41:50Z) - Quantum convolutional neural network for classical data classification [0.8057006406834467]
古典データ分類のための完全パラメータ化量子畳み込みニューラルネットワーク(QCNN)をベンチマークする。
本稿では,CNNにインスパイアされた量子ニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T06:48:34Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
特徴抽出のための量子回路エンコーダからなる量子畳み込みニューラルネットワーク(QCNN)を構築した。
入力音声はまず、Mel-spectrogramを抽出するために量子コンピューティングサーバにアップストリームされる。
対応する畳み込み特徴は、ランダムパラメータを持つ量子回路アルゴリズムを用いて符号化される。
符号化された機能は、最終認識のためにローカルRNNモデルにダウンストリームされる。
論文 参考訳(メタデータ) (2020-10-26T03:36:01Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。