論文の概要: NoSENSE: Learned unrolled cardiac MRI reconstruction without explicit sensitivity maps
- arxiv url: http://arxiv.org/abs/2309.15608v2
- Date: Mon, 07 Oct 2024 16:05:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-08 13:40:28.975605
- Title: NoSENSE: Learned unrolled cardiac MRI reconstruction without explicit sensitivity maps
- Title(参考訳): NoSENSE : 鮮明な感度マップを伴わない非旋回心MRI画像再構成法
- Authors: Felix Frederik Zimmermann, Andreas Kofler,
- Abstract要約: 本稿では,複数のレシーバコイルを用いた加速心MRIのための新しい画像再構成法を提案する。
本手法は画像のコイル間関係を暗黙的に捉えて学習する。
提案手法は,PSNR34.89,35.56,SSIM0.920,0.942をシネトラックで達成した。
- 参考スコア(独自算出の注目度): 0.4419843514606336
- License:
- Abstract: We present a novel learned image reconstruction method for accelerated cardiac MRI with multiple receiver coils based on deep convolutional neural networks (CNNs) and algorithm unrolling. In contrast to many existing learned MR image reconstruction techniques that necessitate coil-sensitivity map (CSM) estimation as a distinct network component, our proposed approach avoids explicit CSM estimation. Instead, it implicitly captures and learns to exploit the inter-coil relationships of the images. Our method consists of a series of novel learned image and k-space blocks with shared latent information and adaptation to the acquisition parameters by feature-wise modulation (FiLM), as well as coil-wise data-consistency (DC) blocks. Our method achieved PSNR values of 34.89 and 35.56 and SSIM values of 0.920 and 0.942 in the cine track and mapping track validation leaderboard of the MICCAI STACOM CMRxRecon Challenge, respectively, ranking 4th among different teams at the time of writing. Code will be made available at https://github.com/fzimmermann89/CMRxRecon
- Abstract(参考訳): 本稿では, 深部畳み込みニューラルネットワーク(CNN)とアルゴリズムアンロールに基づく複数の受信コイルを用いた, 高速心MRIのための新しい画像再構成手法を提案する。
コイル感度マップ(CSM)推定を別個のネットワークコンポーネントとして必要とする既存のMR画像再構成技術とは対照的に,提案手法は明確なCSM推定を回避している。
その代わりに、暗黙的にキャプチャして、画像のコイル間の関係を悪用することを学ぶ。
本手法は,特徴量変調 (FiLM) による取得パラメータへの適応と,コイルワイドデータ一貫性 (DC) ブロックを含む,新しい学習画像とk空間ブロックからなる。
筆者らは,MICCAI STACOM CMRxRecon Challengeにおいて,PSNR34.89,35.56,SSIM0.920,0.942の値を得た。
コードはhttps://github.com/fzimmermann89/CMRxReconで公開される。
関連論文リスト
- Attention Incorporated Network for Sharing Low-rank, Image and K-space Information during MR Image Reconstruction to Achieve Single Breath-hold Cardiac Cine Imaging [9.531827741901662]
我々は,MRI再構成のための新しい深層学習ネットワークに,低ランク,画像,k空間を含む複数の領域からの情報を埋め込むことを提案する。
A-LIKNetは並列ブランチ構造を採用し、k空間と画像領域で独立した学習を可能にする。
論文 参考訳(メタデータ) (2024-07-03T11:54:43Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
ディープラーニングベースのCMRイメージングアルゴリズムへの関心が高まっている。
ディープラーニング手法は大規模なトレーニングデータセットを必要とする。
このデータセットには300人の被験者のマルチコントラスト、マルチビュー、マルチスライス、マルチコイルCMRイメージングデータが含まれている。
論文 参考訳(メタデータ) (2023-09-19T15:14:42Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - A Plug-and-Play Approach to Multiparametric Quantitative MRI: Image
Reconstruction using Pre-Trained Deep Denoisers [4.910318162000904]
本稿では,先進的獲得プロセスに適応したMDFに対する反復的深層学習再構築手法を提案する。
CNNデノイザモデルは、異なるサブサンプリングパターンを持つ2つの模擬取得プロセスでテストされる。
以上の結果から, 買収方式と組織量的バイオプロパティの正確なマッピングに対する一貫した除去性能が示された。
論文 参考訳(メタデータ) (2022-02-10T09:35:25Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
MR画像再構成のための最近のディープラーニングに基づく手法は、通常、汎用的なオートエンコーダアーキテクチャを利用する。
OUCR(Over-and-Under Complete Convolu?tional Recurrent Neural Network)を提案する。
提案手法は, トレーニング可能なパラメータの少ない圧縮されたセンシングと, 一般的なディープラーニングに基づく手法に対して, 大幅な改善を実現する。
論文 参考訳(メタデータ) (2021-06-16T15:56:34Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Knowledge Distillation By Sparse Representation Matching [107.87219371697063]
本稿では,一方の畳み込みネットワーク(cnn)から他方へ,スパース表現を用いて中間知識を伝達するスパース表現マッチング(srm)を提案する。
勾配降下を利用して効率的に最適化し、任意のCNNにプラグアンドプレイで統合できるニューラルプロセッシングブロックとして定式化します。
実験の結果,教師と生徒のネットワーク間のアーキテクチャの違いに頑健であり,複数のデータセットにまたがる他のkd技術よりも優れていた。
論文 参考訳(メタデータ) (2021-03-31T11:47:47Z) - An End-To-End-Trainable Iterative Network Architecture for Accelerated
Radial Multi-Coil 2D Cine MR Image Reconstruction [4.233498905999929]
我々は,複数のレシーバコイルを用いた加速2次元放射状シネMRIの画像再構成のためのCNNアーキテクチャを提案する。
提案手法を学習的・非学習的正規化手法と比較し,提案手法を他のよく知られた再構築手法と比較する。
論文 参考訳(メタデータ) (2021-02-01T11:42:04Z) - Deep Parallel MRI Reconstruction Network Without Coil Sensitivities [4.559089047554929]
並列MRI(pMRI)における高速画像再構成のための頑健な近位勾配スキームをデータからトレーニングした正規化関数にマッピングすることにより,新しいディープニューラルネットワークアーキテクチャを提案する。
提案するネットワークは,不完全なpMRIデータからのマルチコイル画像と均一なコントラストとを適応的に組み合わせることを学び,非線形エンコーダに渡されて画像のスパース特徴を効率的に抽出する。
論文 参考訳(メタデータ) (2020-08-04T08:39:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。