A Survey on Image-text Multimodal Models
- URL: http://arxiv.org/abs/2309.15857v3
- Date: Wed, 19 Jun 2024 02:53:38 GMT
- Title: A Survey on Image-text Multimodal Models
- Authors: Ruifeng Guo, Jingxuan Wei, Linzhuang Sun, Bihui Yu, Guiyong Chang, Dawei Liu, Sibo Zhang, Zhengbing Yao, Mingjun Xu, Liping Bu,
- Abstract summary: This paper first reviews the technological evolution of image-text multimodal models.
Next, we explain how the development of general image-text multimodal technologies promotes the progress of multimodal technologies in the biomedical field.
Finally, we summarize the architecture, components, and data of general image-text multimodal models, and introduce the applications and improvements of image-text multimodal models in the biomedical field.
- Score: 2.2048972157452615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the significant advancements of Large Language Models (LLMs) in the field of Natural Language Processing (NLP), the development of image-text multimodal models has garnered widespread attention. Current surveys on image-text multimodal models mainly focus on representative models or application domains, but lack a review on how general technical models influence the development of domain-specific models, which is crucial for domain researchers. Based on this, this paper first reviews the technological evolution of image-text multimodal models, from early explorations of feature space to visual language encoding structures, and then to the latest large model architectures. Next, from the perspective of technological evolution, we explain how the development of general image-text multimodal technologies promotes the progress of multimodal technologies in the biomedical field, as well as the importance and complexity of specific datasets in the biomedical domain. Then, centered on the tasks of image-text multimodal models, we analyze their common components and challenges. After that, we summarize the architecture, components, and data of general image-text multimodal models, and introduce the applications and improvements of image-text multimodal models in the biomedical field. Finally, we categorize the challenges faced in the development and application of general models into external factors and intrinsic factors, further refining them into 2 external factors and 5 intrinsic factors, and propose targeted solutions, providing guidance for future research directions. For more details and data, please visit our GitHub page: \url{https://github.com/i2vec/A-survey-on-image-text-multimodal-models}.
Related papers
- UniFashion: A Unified Vision-Language Model for Multimodal Fashion Retrieval and Generation [29.489516715874306]
We present UniFashion, a unified framework that simultaneously tackles the challenges of multimodal generation and retrieval tasks within the fashion domain.
Our model significantly outperforms previous single-task state-of-the-art models across diverse fashion tasks.
arXiv Detail & Related papers (2024-08-21T03:17:20Z) - Advanced Multimodal Deep Learning Architecture for Image-Text Matching [33.8315200009152]
Image-text matching is a key multimodal task that aims to model the semantic association between images and text as a matching relationship.
We introduce an advanced multimodal deep learning architecture, which combines the high-level abstract representation ability of deep neural networks for visual information with the advantages of natural language processing models for text semantic understanding.
Experiments show that compared with existing image-text matching models, the optimized new model has significantly improved performance on a series of benchmark data sets.
arXiv Detail & Related papers (2024-06-13T08:32:24Z) - Generalist Multimodal AI: A Review of Architectures, Challenges and Opportunities [5.22475289121031]
Multimodal models are expected to be a critical component to future advances in artificial intelligence.
This work provides a fresh perspective on generalist multimodal models via a novel architecture and training configuration specific taxonomy.
arXiv Detail & Related papers (2024-06-08T15:30:46Z) - Multimodal Large Language Models: A Survey [36.06016060015404]
Multimodal language models integrate multiple data types, such as images, text, language, audio, and other heterogeneity.
This paper begins by defining the concept of multimodal and examining the historical development of multimodal algorithms.
A practical guide is provided, offering insights into the technical aspects of multimodal models.
Lastly, we explore the applications of multimodal models and discuss the challenges associated with their development.
arXiv Detail & Related papers (2023-11-22T05:15:12Z) - DeepSpeed-VisualChat: Multi-Round Multi-Image Interleave Chat via
Multi-Modal Causal Attention [55.2825684201129]
DeepSpeed-VisualChat is designed to optimize Large Language Models (LLMs) by incorporating multi-modal capabilities.
Our framework is notable for (1) its open-source support for multi-round and multi-image dialogues, (2) introducing an innovative multi-modal causal attention mechanism, and (3) utilizing data blending techniques on existing datasets to assure seamless interactions.
arXiv Detail & Related papers (2023-09-25T17:53:29Z) - TextBind: Multi-turn Interleaved Multimodal Instruction-following in the Wild [102.93338424976959]
We introduce TextBind, an almost annotation-free framework for empowering larger language models with the multi-turn interleaved instruction-following capabilities.
Our approach requires only image-caption pairs and generates multi-turn multimodal instruction-response conversations from a language model.
To accommodate interleaved image-text inputs and outputs, we devise MIM, a language model-centric architecture that seamlessly integrates image encoder and decoder models.
arXiv Detail & Related papers (2023-09-14T15:34:01Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
We show that recent advances in each modality, CLIP image representations and scaling of language models, do not consistently improve multimodal self-rationalization of tasks with multimodal inputs.
Our findings call for a backbone modelling approach that can be built on to advance text generation from images and text beyond image captioning.
arXiv Detail & Related papers (2022-05-24T00:52:40Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Multimodal Image Synthesis and Editing: The Generative AI Era [131.9569600472503]
multimodal image synthesis and editing has become a hot research topic in recent years.
We comprehensively contextualize the advance of the recent multimodal image synthesis and editing.
We describe benchmark datasets and evaluation metrics as well as corresponding experimental results.
arXiv Detail & Related papers (2021-12-27T10:00:16Z) - Cross-Media Keyphrase Prediction: A Unified Framework with
Multi-Modality Multi-Head Attention and Image Wordings [63.79979145520512]
We explore the joint effects of texts and images in predicting the keyphrases for a multimedia post.
We propose a novel Multi-Modality Multi-Head Attention (M3H-Att) to capture the intricate cross-media interactions.
Our model significantly outperforms the previous state of the art based on traditional attention networks.
arXiv Detail & Related papers (2020-11-03T08:44:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.