Generalist Multimodal AI: A Review of Architectures, Challenges and Opportunities
- URL: http://arxiv.org/abs/2406.05496v1
- Date: Sat, 8 Jun 2024 15:30:46 GMT
- Title: Generalist Multimodal AI: A Review of Architectures, Challenges and Opportunities
- Authors: Sai Munikoti, Ian Stewart, Sameera Horawalavithana, Henry Kvinge, Tegan Emerson, Sandra E Thompson, Karl Pazdernik,
- Abstract summary: Multimodal models are expected to be a critical component to future advances in artificial intelligence.
This work provides a fresh perspective on generalist multimodal models via a novel architecture and training configuration specific taxonomy.
- Score: 5.22475289121031
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal models are expected to be a critical component to future advances in artificial intelligence. This field is starting to grow rapidly with a surge of new design elements motivated by the success of foundation models in natural language processing (NLP) and vision. It is widely hoped that further extending the foundation models to multiple modalities (e.g., text, image, video, sensor, time series, graph, etc.) will ultimately lead to generalist multimodal models, i.e. one model across different data modalities and tasks. However, there is little research that systematically analyzes recent multimodal models (particularly the ones that work beyond text and vision) with respect to the underling architecture proposed. Therefore, this work provides a fresh perspective on generalist multimodal models (GMMs) via a novel architecture and training configuration specific taxonomy. This includes factors such as Unifiability, Modularity, and Adaptability that are pertinent and essential to the wide adoption and application of GMMs. The review further highlights key challenges and prospects for the field and guide the researchers into the new advancements.
Related papers
- Multimodal Large Language Models and Tunings: Vision, Language, Sensors, Audio, and Beyond [51.141270065306514]
This tutorial aims to equip researchers, practitioners, and newcomers with the knowledge and skills to leverage multimodal AI.
We will cover the latest multimodal datasets and pretrained models, including those beyond vision and language.
Hands-on laboratories will offer practical experience with state-of-the-art multimodal models.
arXiv Detail & Related papers (2024-10-08T01:41:56Z) - Multi-Modal Generative AI: Multi-modal LLM, Diffusion and Beyond [48.43910061720815]
Multi-modal generative AI has received increasing attention in both academia and industry.
One natural question arises: Is it possible to have a unified model for both understanding and generation?
arXiv Detail & Related papers (2024-09-23T13:16:09Z) - From Efficient Multimodal Models to World Models: A Survey [28.780451336834876]
Multimodal Large Models (MLMs) are becoming a significant research focus combining powerful language models with multimodal learning.
This review explores the latest developments and challenges in large instructions, emphasizing their potential in achieving artificial general intelligence.
arXiv Detail & Related papers (2024-06-27T15:36:43Z) - A Review of Multi-Modal Large Language and Vision Models [1.9685736810241874]
Large Language Models (LLMs) have emerged as a focal point of research and application.
Recently, LLMs have been extended into multi-modal large language models (MM-LLMs)
This paper provides an extensive review of the current state of those LLMs with multi-modal capabilities as well as the very recent MM-LLMs.
arXiv Detail & Related papers (2024-03-28T15:53:45Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
Vision-Language Models (VLMs) are advanced models that can tackle more intricate tasks such as image captioning and visual question answering.
Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.
We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible.
arXiv Detail & Related papers (2024-02-20T18:57:34Z) - The Revolution of Multimodal Large Language Models: A Survey [46.84953515670248]
Multimodal Large Language Models (MLLMs) can seamlessly integrate visual and textual modalities.
This paper provides a review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques.
arXiv Detail & Related papers (2024-02-19T19:01:01Z) - Delving into Multi-modal Multi-task Foundation Models for Road Scene Understanding: From Learning Paradigm Perspectives [56.2139730920855]
We present a systematic analysis of MM-VUFMs specifically designed for road scenes.
Our objective is to provide a comprehensive overview of common practices, referring to task-specific models, unified multi-modal models, unified multi-task models, and foundation model prompting techniques.
We provide insights into key challenges and future trends, such as closed-loop driving systems, interpretability, embodied driving agents, and world models.
arXiv Detail & Related papers (2024-02-05T12:47:09Z) - Generative Multimodal Models are In-Context Learners [60.50927925426832]
We introduce Emu2, a generative multimodal model with 37 billion parameters, trained on large-scale multimodal sequences.
Emu2 exhibits strong multimodal in-context learning abilities, even emerging to solve tasks that require on-the-fly reasoning.
arXiv Detail & Related papers (2023-12-20T18:59:58Z) - Multimodal Foundation Models: From Specialists to General-Purpose
Assistants [187.72038587829223]
The research landscape encompasses five core topics, categorized into two classes.
The target audiences of the paper are researchers, graduate students, and professionals in computer vision and vision-language multimodal communities.
arXiv Detail & Related papers (2023-09-18T17:56:28Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.