論文の概要: Open Source Infrastructure for Differentiable Density Functional Theory
- arxiv url: http://arxiv.org/abs/2309.15985v1
- Date: Wed, 27 Sep 2023 20:07:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 18:57:34.073424
- Title: Open Source Infrastructure for Differentiable Density Functional Theory
- Title(参考訳): 微分密度汎関数理論のためのオープンソース基盤
- Authors: Advika Vidhyadhiraja, Arun Pa Thiagarajan, Shang Zhu, Venkat
Viswanathan, Bharath Ramsundar
- Abstract要約: ニューラルネットワーク相関関数をトレーニングするオープンソースインフラストラクチャを構築します。
複数のグループによる作業から最先端技術を適用することで,処理パイプラインの標準化を目指す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Learning exchange correlation functionals, used in quantum chemistry
calculations, from data has become increasingly important in recent years, but
training such a functional requires sophisticated software infrastructure. For
this reason, we build open source infrastructure to train neural exchange
correlation functionals. We aim to standardize the processing pipeline by
adapting state-of-the-art techniques from work done by multiple groups. We have
open sourced the model in the DeepChem library to provide a platform for
additional research on differentiable quantum chemistry methods.
- Abstract(参考訳): 近年、量子化学計算で用いられる交換相関関数の学習はますます重要になっているが、そのような関数の訓練には高度なソフトウェアインフラが必要である。
そこで我々は,ニューラルネットワーク相関関数をトレーニングするオープンソースインフラストラクチャを構築した。
複数のグループによる作業から最先端技術を適用することで,処理パイプラインの標準化を目指す。
我々は、このモデルをdeepchemライブラリでオープンソース化し、微分可能な量子化学手法に関するさらなる研究のためのプラットフォームを提供する。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Quantum-Enhanced Neural Exchange-Correlation Functionals [0.193482901474023]
コーンシャム密度汎関数論(英語版)(KS-DFT)は、分子の正確な基底状態エネルギーと電子密度を、未知の普遍交換相関(英語版)(XC)関数に基づいて提供する。
近年の研究では、ニューラルネットワークが、その機能に対する近似を表現するために効率的に学習できることが示されており、トレーニングプロセス中に存在しない分子に正確な一般化を提供する。
量子強化機械学習(ML)の最近の進歩により、量子ニューラルネットワーク(QNN)モデルがMLアプリケーションにメリットをもたらす証拠が増えている。
論文 参考訳(メタデータ) (2024-04-22T15:07:57Z) - Grad DFT: a software library for machine learning enhanced density
functional theory [0.0]
密度汎関数理論(DFT)は、計算量子化学と材料科学の基盤となっている。
最近の研究は、機械学習がDFTの能力をいかに拡張できるかを探求し始めている。
我々は、完全に差別化可能なJAXベースのDFTライブラリであるGrad DFTを紹介し、高速なプロトタイピングと機械学習による交換相関エネルギー関数の実験を可能にする。
論文 参考訳(メタデータ) (2023-09-23T00:25:06Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
歴史的データを用いて意思決定戦略を最適化することを目的としたオフライン強化学習は、現実の応用に広く適用されている。
微分関数クラス近似(DFA)を用いたオフライン強化学習の検討から一歩踏み出した。
最も重要なことは、悲観的な適合Q-ラーニングアルゴリズムを解析することにより、オフライン微分関数近似が有効であることを示すことである。
論文 参考訳(メタデータ) (2022-10-03T07:59:42Z) - Differentiable programming for functional connectomics [0.0]
本稿では,関数コネクトロミクスで使用される共通操作を,完全に微分可能な処理ブロックとして実装した新しい解析パラダイムとソフトウェアツールボックスを提案する。
この差別化プログラムは、従来のパイプラインとエンドツーエンドのニューラルネットワークの中間に位置する。
我々の成果とソフトウェアは、関数コネクトロミクスのための微分可能プログラミングの可能性を実証している。
論文 参考訳(メタデータ) (2022-05-31T10:53:31Z) - A backend-agnostic, quantum-classical framework for simulations of
chemistry in C++ [62.997667081978825]
本稿では,量子古典ソフトウェアをプロトタイピング,開発,デプロイするためのプラットフォームとして,XACCシステムレベルの量子コンピューティングフレームワークを提案する。
現在XACCで実装されている最先端の化学アルゴリズムのいくつかを示す一連の例を示す。
論文 参考訳(メタデータ) (2021-05-04T16:53:51Z) - Quantum Machine Learning with SQUID [64.53556573827525]
分類問題に対するハイブリッド量子古典アルゴリズムを探索するオープンソースフレームワークであるScaled QUantum IDentifier (SQUID)を提案する。
本稿では、一般的なMNISTデータセットから標準バイナリ分類問題にSQUIDを使用する例を示す。
論文 参考訳(メタデータ) (2021-04-30T21:34:11Z) - Learning the exchange-correlation functional from nature with fully
differentiable density functional theory [0.0]
我々は、完全に微分可能な3次元コーン・シャム密度汎関数論フレームワーク内での交換相関関数を置き換えるためにニューラルネットワークを訓練する。
我々の訓練された交換相関ネットワークは110分子の集合体における原子化とイオン化エネルギーの予測を改善した。
論文 参考訳(メタデータ) (2021-02-08T14:25:10Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
光核の基底状態波動関数をモデル化するためのニューラルネットワーク量子状態アンサッツを導入する。
我々は、Aleq 4$核の結合エネルギーと点核密度を、上位のピオンレス実効場理論から生じるものとして計算する。
論文 参考訳(メタデータ) (2020-07-28T14:52:28Z) - Gradient-Based Training and Pruning of Radial Basis Function Networks
with an Application in Materials Physics [0.24792948967354234]
本稿では,高速かつスケーラブルなオープンソース実装による放射状基底関数ネットワークのトレーニング手法を提案する。
連立データと連立データのモデル解析のための新しいクローズドフォーム最適化基準を導出する。
論文 参考訳(メタデータ) (2020-04-06T11:32:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。