論文の概要: On the practical applicability of modern DFT functionals for chemical computations. Case study of DM21 applicability for geometry optimization
- arxiv url: http://arxiv.org/abs/2501.12149v1
- Date: Tue, 21 Jan 2025 14:01:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:20:22.958431
- Title: On the practical applicability of modern DFT functionals for chemical computations. Case study of DM21 applicability for geometry optimization
- Title(参考訳): 化学計算における最新のDFT関数の実用性について -幾何最適化におけるDM21の適用例-
- Authors: Kirill Kulaev, Alexander Ryabov, Michael Medvedev, Evgeny Burnaev, Vladimir Vanovskiy,
- Abstract要約: 本研究は,分子量予測におけるDM21関数の効率評価に焦点をあてる。
幾何最適化問題におけるDM21関数に対するPySCFの幾何最適化を実装した。
本研究は,DFTにおける幾何最適化におけるニューラルネットワーク機能の可能性と現状の課題を明らかにするものである。
- 参考スコア(独自算出の注目度): 55.88862563823878
- License:
- Abstract: Density functional theory (DFT) is probably the most promising approach for quantum chemistry calculations considering its good balance between calculations precision and speed. In recent years, several neural network-based functionals have been developed for exchange-correlation energy approximation in DFT, DM21 developed by Google Deepmind being the most notable between them. This study focuses on evaluating the efficiency of DM21 functional in predicting molecular geometries, with a focus on the influence of oscillatory behavior in neural network exchange-correlation functionals. We implemented geometry optimization in PySCF for the DM21 functional in geometry optimization problem, compared its performance with traditional functionals, and tested it on various benchmarks. Our findings reveal both the potential and the current challenges of using neural network functionals for geometry optimization in DFT. We propose a solution extending the practical applicability of such functionals and allowing to model new substances with their help.
- Abstract(参考訳): 密度汎関数理論(DFT)は、計算精度と速度のバランスが良いことを考えると、量子化学計算において最も有望なアプローチである。
近年、DFTにおける交換相関エネルギー近似のために、いくつかのニューラルネットワークベースの関数が開発され、Google Deepmindによって開発されたDM21が最も注目されている。
本研究は, 分子量予測におけるDM21関数の効率評価に焦点をあて, ニューラルネットワーク交換相関関数における振動挙動の影響に着目した。
DM21関数の幾何最適化問題に対してPySCFに幾何最適化を実装し,その性能を従来の関数と比較し,様々なベンチマークで検証した。
本研究は,DFTの幾何最適化におけるニューラルネットワーク機能の可能性と現状の課題を明らかにするものである。
そこで本研究では,これらの機能性の実用性を拡張し,新しい物質をモデル化する手法を提案する。
関連論文リスト
- Learnable Activation Functions in Physics-Informed Neural Networks for Solving Partial Differential Equations [0.0]
物理情報ネットワーク(PINN)における学習可能なアクティベーション関数を用いた部分微分方程式(PDE)の解法について検討する。
従来のMLP(Multilayer Perceptrons)とKAN(Kolmogorov-Arnold Neural Networks)に対する固定および学習可能なアクティベーションの比較を行った。
この発見は、PDEソルバのトレーニング効率、収束速度、テスト精度のバランスをとるニューラルネットワークアーキテクチャの設計に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-11-22T18:25:13Z) - DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Enhancing Hypergradients Estimation: A Study of Preconditioning and
Reparameterization [49.73341101297818]
双レベル最適化は、内部最適化問題の解に依存する外的目的関数を最適化することを目的としている。
外部問題の過次性を計算する従来の方法は、Implicit Function Theorem (IFT) を使うことである。
IFT法の誤差について検討し,この誤差を低減するための2つの手法を解析した。
論文 参考訳(メタデータ) (2024-02-26T17:09:18Z) - Grad DFT: a software library for machine learning enhanced density
functional theory [0.0]
密度汎関数理論(DFT)は、計算量子化学と材料科学の基盤となっている。
最近の研究は、機械学習がDFTの能力をいかに拡張できるかを探求し始めている。
我々は、完全に差別化可能なJAXベースのDFTライブラリであるGrad DFTを紹介し、高速なプロトタイピングと機械学習による交換相関エネルギー関数の実験を可能にする。
論文 参考訳(メタデータ) (2023-09-23T00:25:06Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
機械学習とベイズ最適実験設計(BOED)を組み合わせた方法論を提案する。
本手法は,大規模スピンダイナミクスシミュレーションのためのニューラルネットワークモデルを用いて,BOEDの正確な分布と実用計算を行う。
数値ベンチマークでは,XPFS実験の誘導,モデルパラメータの予測,実験時間内でのより情報的な測定を行う上で,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-03T06:19:20Z) - Non-equilibrium molecular geometries in graph neural networks [2.6040244706888998]
グラフニューラルネットワークは、複雑な構造とプロパティの関係を学ぶための強力なフレームワークになっている。
近年,分子の3次元形状情報と結合構造を併用することにより,幅広い特性のより正確な予測が可能であることが示唆されている。
論文 参考訳(メタデータ) (2022-03-07T20:20:52Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
2層ニューラルネットワークによる関数近似について検討する。
この結果は線形(あるいは可溶性次元)法で達成できることを大幅に改善する。
論文 参考訳(メタデータ) (2021-07-14T03:03:56Z) - eQE 2.0: Subsystem DFT Beyond GGA Functionals [58.720142291102135]
サブシステム-DFT (subsystem-DFT) は、大規模電子構造計算の計算コストを劇的に削減することができる。
sDFTの鍵となる要素は、その精度を支配する非付加的な運動エネルギーと交換相関関数である。
eQE 2.0は従来のコーンシャムDFTやCCSD(T)と比較して優れた相互作用エネルギーを提供する
論文 参考訳(メタデータ) (2021-03-12T22:26:36Z) - Learning the exchange-correlation functional from nature with fully
differentiable density functional theory [0.0]
我々は、完全に微分可能な3次元コーン・シャム密度汎関数論フレームワーク内での交換相関関数を置き換えるためにニューラルネットワークを訓練する。
我々の訓練された交換相関ネットワークは110分子の集合体における原子化とイオン化エネルギーの予測を改善した。
論文 参考訳(メタデータ) (2021-02-08T14:25:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。