論文の概要: Multi-mode Cavity Centric Architectures for Quantum Simulation
- arxiv url: http://arxiv.org/abs/2309.15994v1
- Date: Wed, 27 Sep 2023 20:16:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 18:58:47.480233
- Title: Multi-mode Cavity Centric Architectures for Quantum Simulation
- Title(参考訳): 量子シミュレーションのための多モードキャビティCentric Architecture
- Authors: Samuel Stein, Fei Hua, Chenxu Liu, Charles Guinn, James Ang, Eddy
Zhang, Srivatsan Chakram, Yufei Ding, Ang Li
- Abstract要約: 短期的な量子コンピューティング技術は、アルゴリズムを誘導する能力を妨げ、膨大な複雑さのオーバーヘッドに悩まされる。
量子シミュレーション(Quantum Simulation)は、量子コンピュータを用いて量子システムをシミュレートする手法である。
特に興味深い技術は、複数のキュービットを1つのデバイスに格納できるマルチモード超伝導共振器である。
- 参考スコア(独自算出の注目度): 12.40374538847457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Near-term quantum computing technologies grapple with huge complexity
overheads, hindering their ability to induce algorithms, necessitating
engineering and scientific innovations. One class of problems of interest is
Quantum Simulation, whereby quantum systems are simulated using a quantum
computer. However, current devices are yet to surpass classical tensor network
techniques. For problems of interest, where classical simulation techniques
fail, large degrees of entanglement are required. Another challenge of
implementing quantum simulation problems is that qubits sit idle whilst
alternating simulation terms are implemented, exposing the system to
decoherence. In the near term, 2D planar superconducting lattices of
circuit-QED elements such as the transmon continue to draw substantial
attention, but they are hindered by their nearest neighbor topology and
relatively short lifespan, two problems that are problematic for quantum
simulation. One technology of particular interest is the multi-mode
superconducting resonator capable of storing multiple qubits in one device. We
observe that these cavities have a natural virtual topology that aligns
particularly well with quantum simulation problems, and exhibit much longer
lifespans in comparison to other planar superconducting hardware. In this paper
we present MUCIC, we discuss the simple integration of these devices into the
current landscape and their implications to quantum simulation, motivated by
their alignment to the quantum simulation problem, and potential as a quantum
memory candidate. We report the development of MUCICs transpiler, leading to
reductions of up to 82% in quantum simulation circuit depths. Additionally, our
investigation demonstrates improvements of up to 19.4% in converged results
from Variational Quantum Algorithms.
- Abstract(参考訳): 短期量子コンピューティング技術は、膨大な複雑さのオーバーヘッドに対処し、アルゴリズムを誘導し、工学と科学の革新を必要とする能力を妨げている。
関心のある問題の1つのクラスは量子シミュレーションであり、量子システムは量子コンピュータを使ってシミュレーションされる。
しかし、現在のデバイスはまだ古典的なテンソルネットワーク技術を超えていない。
古典的なシミュレーション技術が失敗する問題に対しては、大きな絡み合いが必要となる。
量子シミュレーション問題を実装する別の課題は、量子ビットがアイドル状態にあり、交互にシミュレーション項が実装され、システムがデコヒーレンスに露呈することである。
近い将来、トランスモンなどの回路qed素子の2次元平面超伝導格子は大きな注目を集めるが、それらは近接トポロジーと比較的短い寿命によって妨げられ、量子シミュレーションに問題となる2つの問題となっている。
特に興味深い技術は、複数のキュービットを1つのデバイスに格納できるマルチモード超伝導共振器である。
これらのキャビティは、量子シミュレーション問題に特によく適合する自然な仮想トポロジを持ち、他の平面超伝導ハードウェアに比べて寿命が長いことが観察される。
本稿では,これらのデバイスが量子シミュレーション問題と整合し,量子メモリ候補としての可能性に動機づけられた,現在の風景への単純な統合とその量子シミュレーションへの影響について論じる。
我々は,MUCICsトランスパイラの開発を報告し,量子シミュレーション回路の深さを最大82%削減した。
さらに、変動量子アルゴリズムによる収束結果の最大19.4%の改善を実証した。
関連論文リスト
- An Efficient Classical Algorithm for Simulating Short Time 2D Quantum Dynamics [2.891413712995642]
本稿では,2次元量子システムにおける短時間のダイナミクスをシミュレーションする,効率的な古典的アルゴリズムを提案する。
この結果から, 短時間2次元量子力学の複雑さに固有の単純さが明らかとなった。
この研究は、古典計算と量子計算の境界についての理解を深める。
論文 参考訳(メタデータ) (2024-09-06T09:59:12Z) - Resource-Efficient Hybrid Quantum-Classical Simulation Algorithm [0.0]
デジタル量子コンピュータは、量子時間進化の実行において指数的なスピードアップを約束する。
中間時間ステップで所望の量子特性を抽出するタスクは、依然として計算ボトルネックである。
我々は,従来のコンピュータがFTQCデバイスや量子時間プロパゲータを利用でき,このボトルネックを克服できるハイブリッドシミュレータを提案する。
論文 参考訳(メタデータ) (2024-05-17T04:17:27Z) - Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation [49.1574468325115]
本研究では,量子トンネルシミュレーションの理論的背景とハードウェア対応回路の実装について述べる。
我々は、ハードウェアのアンダーユース化問題を解決するために、ZNEとREM(エラー軽減技術)と量子チップのマルチプログラミングを使用する。
論文 参考訳(メタデータ) (2024-04-10T14:27:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer [0.40964539027092917]
雑音の多いコンピュータ上でのオープン量子システムの力学をシミュレートする実用的な手法を提案する。
提案手法は,IBM-Q実機におけるゲートノイズを利用して,2量子ビットのみを用いて計算を行う。
最後に、トロッター展開を行う際の量子回路の深さの増大に対処するため、短期力学シミュレーションを拡張するために転送テンソル法(TTM)を導入した。
論文 参考訳(メタデータ) (2023-12-03T13:56:41Z) - Quantum Simulations for Strong-Field QED [0.0]
強磁場QED(SFQED)の3+1$次元での量子シミュレーションを行う。
ブライト・ウィーラー対生成に関連する相互作用は量子回路に変換される。
ヌルダブルスリット」実験の量子シミュレーションは古典シミュレーションとよく一致している。
論文 参考訳(メタデータ) (2023-11-30T03:05:26Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
小型電子フォノン系のゲートベース量子シミュレーションにおける絶対的資源コストについて考察する。
我々は、弱い電子-フォノン結合と強い電子-フォノン結合の両方のためのIBM量子ハードウェアの実験を行う。
デバイスノイズは大きいが、近似回路再コンパイルを用いることで、正確な対角化に匹敵する電流量子コンピュータ上で電子フォノンダイナミクスを得る。
論文 参考訳(メタデータ) (2022-02-16T19:00:00Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
現在の世代のノイズの多い中間スケール量子コンピュータ(NISQ)は、チップサイズとエラー率に大きく制限されている。
我々は、自由フェルミオンとして知られる特定のスピンハミルトニアンをシミュレーションするために、量子回路を効率よく圧縮するために局所化回路変換を導出する。
提案した数値回路圧縮アルゴリズムは、後方安定に動作し、$mathcalO(103)$スピンを超える回路合成を可能にするスピンの数で3次スケールする。
論文 参考訳(メタデータ) (2021-08-06T19:38:03Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
想像時間における進化は、量子多体系の基底状態を見つけるための顕著な技術である。
本稿では,量子コンピュータ上での仮想時間伝搬を実現するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-24T12:48:00Z) - Stochastic Quantum Circuit Simulation Using Decision Diagrams [3.9006434061597877]
量子アルゴリズムの研究のかなりの量は、古典的なハードウェア上での量子回路のシミュレーションに依存している。
我々は、リソース要求を大幅に削減するために、意思決定ダイアグラムと同時実行の使用を提案する。
厳密な理論によって裏付けられた実証的な研究は、このアプローチによって特定の量子回路のより高速でよりスケーラブルなシミュレーションが可能になることを示している。
論文 参考訳(メタデータ) (2020-12-10T12:10:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。