論文の概要: Sampling Hybrid Climate Simulation at Scale to Reliably Improve Machine Learning Parameterization
- arxiv url: http://arxiv.org/abs/2309.16177v2
- Date: Thu, 4 Jul 2024 07:21:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 01:01:54.430821
- Title: Sampling Hybrid Climate Simulation at Scale to Reliably Improve Machine Learning Parameterization
- Title(参考訳): 機械学習パラメータ化の信頼性向上を目的とした大規模ハイブリッド気候シミュレーションのサンプリング
- Authors: Jerry Lin, Sungduk Yu, Liran Peng, Tom Beucler, Eliot Wong-Toi, Zeyuan Hu, Pierre Gentine, Margarita Geleta, Mike Pritchard,
- Abstract要約: サブグリッドプロセスの機械学習(ML)パラメータ化は、いつか従来のパラメータ化を置き換えるかもしれない。
本研究は,ハイブリッドシミュレーションの大規模アンサンブルを用いた全物理MLパラメータ化の結合挙動について検討する。
オフラインとオンラインのパフォーマンスに明らかな改善をもたらす設計上の決定を特定します。
- 参考スコア(独自算出の注目度): 1.9199275795132604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine-learning (ML) parameterizations of subgrid processes (here of turbulence, convection, and radiation) may one day replace conventional parameterizations by emulating high-resolution physics without the cost of explicit simulation. However, their development has been stymied by uncertainty surrounding whether or not improved offline performance translates to improved online performance (i.e., when coupled to a large-scale general circulation model (GCM)). A key barrier has been the limited sampling of the online effects of the ML design decisions and tuning due to the complexity of performing large ensembles of hybrid physics-ML climate simulations. Our work examines the coupled behavior of full-physics ML parameterizations using large ensembles of hybrid simulations, totalling 2,970 in our case. With extensive sampling, we statistically confirm that lowering offline error lowers online error (given certain constraints). However, we also reveal that decisions decreasing online error, like removing dropout, can trade off against hybrid model stability and vice versa. Nevertheless, we are able to identify design decisions that yield unambiguous improvements to offline and online performance, namely incorporating memory and training on multiple climates. We also find that converting moisture input from specific to relative humidity enhances online stability and that using a Mean Absolute Error (MAE) loss breaks the aforementioned offline/online error relationship. By enabling rapid online experimentation at scale, we empirically answer previously unresolved questions regarding subgrid ML parameterization design.
- Abstract(参考訳): サブグリッドプロセス(乱流、対流、放射)の機械学習(ML)パラメータ化は、明示的なシミュレーションのコストを伴わずに高分解能物理をエミュレートすることで、従来のパラメータ化を置き換えることができる。
しかし、オフライン性能の改善がオンラインパフォーマンスの向上に繋がるかどうかという不確実性(大規模な総合循環モデル(GCM)と組み合わせた場合)により、その発展は妨げられている。
鍵となる障壁は、ハイブリッド物理とML気候シミュレーションの大きなアンサンブルを実行する複雑さのため、ML設計決定とチューニングのオンライン効果の限定的なサンプリングである。
本研究は, ハイブリッドシミュレーションの大規模なアンサンブルを用いて, 完全物理MLパラメタライゼーションの結合挙動について検討した。
大規模なサンプリングにより、オフラインエラーの低減がオンラインエラーを減少させる(一定の制約を課す)ことを統計的に確認する。
しかし、オンラインエラーを減らす決定は、ドロップアウトを除去するなど、ハイブリッドモデルの安定性とトレードオフし、その逆も可能であることも明らかにします。
それでも、オフラインやオンラインのパフォーマンスに不明確な改善をもたらす設計上の決定を特定できます。
また,比湿度から相対湿度への水分入力の変換によりオンラインの安定性が向上し,平均絶対誤差(MAE)損失が上記のオフライン/オンラインの誤差関係を損なうことも見出した。
大規模なオンライン実験を迅速に行えるようにすることで、サブグリッドMLパラメータ化設計に関する未解決の問題に実証的に答える。
関連論文リスト
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Towards Physically Consistent Deep Learning For Climate Model Parameterizations [46.07009109585047]
パラメータ化は、気候予測において、系統的なエラーと大きな不確実性の主な原因である。
深層学習(DL)に基づくパラメータ化は、計算に高価で高解像度のショートシミュレーションのデータに基づいて訓練されており、気候モデルを改善するための大きな可能性を示している。
本稿では,DLに基づくパラメータ化のための効率的な教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-06T10:02:49Z) - Joint Parameter and Parameterization Inference with Uncertainty Quantification through Differentiable Programming [0.20530463088872453]
本研究では,物理パラメータと不確実な定量化を伴う機械学習パラメータ化を共同で推定するための新しいフレームワークを提案する。
本フレームワークは,高次元パラメータ空間内でのオンライン学習と効率的なベイズ推論を,微分可能プログラミングにより促進する。
論文 参考訳(メタデータ) (2024-03-04T17:02:23Z) - Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation [56.79064699832383]
Cloud-Edge Elastic Model Adaptation (CEMA)パラダイムを確立し、エッジモデルが前方伝播のみを実行するようにします。
CEMAでは,通信負担を軽減するため,不要なサンプルをクラウドにアップロードすることを避けるための2つの基準を考案した。
論文 参考訳(メタデータ) (2024-02-27T08:47:19Z) - ClimSim-Online: A Large Multi-scale Dataset and Framework for Hybrid ML-physics Climate Emulation [45.201929285600606]
我々は、ハイブリッドML物理シミュレータを開発するためのエンドツーエンドワークフローを含むClimSim-Onlineを提案する。
データセットはグローバルで、高いサンプリング頻度で10年間にわたっています。
MLモデルを運用環境シミュレータに統合するための、クロスプラットフォームでコンテナ化されたパイプラインを提供します。
論文 参考訳(メタデータ) (2023-06-14T21:26:31Z) - Environment Transformer and Policy Optimization for Model-Based Offline
Reinforcement Learning [25.684201757101267]
本研究では環境変換器と呼ばれる不確実性を考慮したシーケンスモデリングアーキテクチャを提案する。
遷移力学と報酬関数の正確なモデリングにより、環境変換器は任意の計画、動的プログラミング、オフラインRLのためのポリシー最適化アルゴリズムと組み合わせることができる。
論文 参考訳(メタデータ) (2023-03-07T11:26:09Z) - Fast and Accurate Error Simulation for CNNs against Soft Errors [64.54260986994163]
本稿では,誤りシミュレーションエンジンを用いて,コナールニューラルネットワーク(CNN)の信頼性解析のためのフレームワークを提案する。
これらの誤差モデルは、故障によって誘導されるCNN演算子の出力の破損パターンに基づいて定義される。
提案手法は,SASSIFIの欠陥効果の約99%の精度と,限定的なエラーモデルのみを実装した44倍から63倍までのスピードアップを実現する。
論文 参考訳(メタデータ) (2022-06-04T19:45:02Z) - Real-time simulation of parameter-dependent fluid flows through deep
learning-based reduced order models [0.2538209532048866]
還元次数モデル (ROM) はパラメータ依存の流体力学問題を高速に近似する。
ディープラーニング(DL)ベースのROMは、非線形トライアル多様体と還元力学の両方を非侵襲的に学習することで、これらの制限をすべて克服する。
得られたPOD-DL-ROMは、シリンダーベンチマークの周囲の流れ、固定された剛性ブロックに付着した弾性ビームとラミナー非圧縮性フローとの流体構造相互作用、大脳動脈瘤内の血流のほぼリアルタイムに正確な結果をもたらすことが示されている。
論文 参考訳(メタデータ) (2021-06-10T13:07:33Z) - Edge Federated Learning Via Unit-Modulus Over-The-Air Computation
(Extended Version) [64.76619508293966]
本稿では,効率の良いエッジフェデレーション学習を実現するために,UM-AirCompフレームワークを提案する。
ローカルモデルパラメータを同時にアップロードし、アナログビームフォーミングを通じてグローバルモデルパラメータを更新する。
車両間自動運転シミュレーションプラットフォームにおけるUM-AirCompの実装を実演する。
論文 参考訳(メタデータ) (2021-01-28T15:10:22Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。