論文の概要: Sample Margin-Aware Recalibration of Temperature Scaling
- arxiv url: http://arxiv.org/abs/2506.23492v1
- Date: Mon, 30 Jun 2025 03:35:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.909281
- Title: Sample Margin-Aware Recalibration of Temperature Scaling
- Title(参考訳): 温度スケーリングのサンプルマージン・アウェア・リカレーション
- Authors: Haolan Guo, Linwei Tao, Haoyang Luo, Minjing Dong, Chang Xu,
- Abstract要約: 近年のディープラーニングの進歩は予測精度を大幅に改善した。
現代のニューラルネットワークは体系的に過信され、安全クリティカルなシナリオに展開するリスクを生じさせる。
本稿では,上位2つのロジット間のマージンに基づいて,ロジットを正確にスケールする軽量でデータ効率の高いリカバリ手法を提案する。
- 参考スコア(独自算出の注目度): 20.87493013833571
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in deep learning have significantly improved predictive accuracy. However, modern neural networks remain systematically overconfident, posing risks for deployment in safety-critical scenarios. Current post-hoc calibration methods face a fundamental dilemma: global approaches like Temperature Scaling apply uniform adjustments across all samples, introducing high bias despite computational efficiency, while more expressive methods that operate on full logit distributions suffer from high variance due to noisy high-dimensional inputs and insufficient validation data. To address these challenges, we propose Sample Margin-Aware Recalibration of Temperature (SMART), a lightweight, data-efficient recalibration method that precisely scales logits based on the margin between the top two logits -- termed the logit gap. Specifically, the logit gap serves as a denoised, scalar signal directly tied to decision boundary uncertainty, providing a robust indicator that avoids the noise inherent in high-dimensional logit spaces while preserving model prediction invariance. Meanwhile, SMART employs a novel soft-binned Expected Calibration Error (SoftECE) objective that balances model bias and variance through adaptive binning, enabling stable parameter updates even with extremely limited calibration data. Extensive evaluations across diverse datasets and architectures demonstrate that SMART achieves state-of-the-art calibration performance even with substantially fewer parameters compared to existing parametric methods, offering a principled, robust, and highly efficient solution for practical uncertainty quantification in neural network predictions. The source code is available at: https://anonymous.4open.science/r/SMART-8B11.
- Abstract(参考訳): 近年のディープラーニングの進歩は予測精度を大幅に改善した。
しかし、現代のニューラルネットワークは体系的に過信され、安全クリティカルなシナリオに展開するリスクを生じさせる。
温度スケーリングのような大域的なアプローチは、全てのサンプルに対して均一な調整を適用し、計算効率に関わらず高いバイアスを発生させる一方、完全なロジット分布を演算するより表現力のある方法は、ノイズの多い高次元入力と不十分な検証データによって、高い分散に悩まされる。
これらの課題に対処するために、ロジットギャップと呼ばれる、上位2つのロジット間のマージンに基づいてロジットを正確にスケールする、軽量でデータ効率の良いリカバリ手法であるSample Margin-Aware Recalibration of Temperature (SMART)を提案する。
特に、ロジットギャップは、決定境界の不確実性に直接結びついており、モデル予測不変性を保ちながら、高次元ロジット空間に固有のノイズを避ける頑健な指標を提供する。
一方、SMARTは、適応的なバイナリ化によってモデルのバイアスと分散のバランスを保ち、極めて限られたキャリブレーションデータであっても安定したパラメータ更新を可能にする、ソフトバインドされた期待キャリブレーション誤差(SoftECE)という新たな目標を採用している。
多様なデータセットやアーキテクチャにわたる広範囲な評価は、SMARTが既存のパラメトリック手法と比較してパラメータが大幅に少ない場合でも、最先端のキャリブレーション性能を達成することを示し、ニューラルネットワーク予測における実用的な不確実性定量化のための原則付き、堅牢で、高効率なソリューションを提供する。
ソースコードは以下の通り:https://anonymous.4open.science/r/SMART-8B11。
関連論文リスト
- Towards Understanding Variants of Invariant Risk Minimization through the Lens of Calibration [0.6906005491572401]
本稿では,Information BottleneckをベースとしたITMが,異なる環境における一貫したキャリブレーションを実現することを示す。
私たちの経験的証拠は、環境全体にわたって一貫した校正を示すモデルも十分に校正されていることを示している。
論文 参考訳(メタデータ) (2024-01-31T02:08:43Z) - Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
最近の研究では、ディープニューラルネットワーク(DNN)が過信的な予測を行う傾向があることが示されている。
予測平均信頼度と予測確実性(MACC)の多クラスアライメントとして知られる簡易なプラグアンドプレイ補助損失を特徴とする列車時キャリブレーション法を提案する。
本手法は,領域内および領域外両方のキャリブレーション性能を実現する。
論文 参考訳(メタデータ) (2023-09-06T00:56:24Z) - Sampling from Gaussian Process Posteriors using Stochastic Gradient
Descent [43.097493761380186]
勾配アルゴリズムは線形系を解くのに有効な方法である。
最適値に収束しない場合であっても,勾配降下は正確な予測を導出することを示す。
実験的に、勾配降下は十分に大規模または不条件の回帰タスクにおいて最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-06-20T15:07:37Z) - Confidence Calibration for Intent Detection via Hyperspherical Space and
Rebalanced Accuracy-Uncertainty Loss [17.26964140836123]
一部のシナリオでは、ユーザは正確さだけでなく、モデルの信頼性も気にします。
本稿では,超球面空間と精度・不確かさ損失の再バランスを用いたモデルを提案する。
本モデルでは,既存の校正手法より優れ,校正基準の大幅な改善を実現している。
論文 参考訳(メタデータ) (2022-03-17T12:01:33Z) - Improving Generalization via Uncertainty Driven Perturbations [107.45752065285821]
トレーニングデータポイントの不確実性による摂動について考察する。
損失駆動摂動とは異なり、不確実性誘導摂動は決定境界を越えてはならない。
線形モデルにおいて,UDPがロバスト性マージン決定を達成することが保証されていることを示す。
論文 参考訳(メタデータ) (2022-02-11T16:22:08Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration [57.568461777747515]
我々は新しいキャリブレーション手法であるパラメタライズド温度スケーリング(PTS)を導入する。
最新のポストホックキャリブレータの精度保持性能は、その本質的な表現力によって制限されることを実証します。
当社の新しい精度保存手法が,多数のモデルアーキテクチャやデータセット,メトリクスにおいて,既存のアルゴリズムを一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2021-02-24T10:18:30Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
我々は予測時間バッチ正規化と呼び、共変量シフト時のモデル精度とキャリブレーションを大幅に改善する。
予測時間バッチ正規化は、既存の最先端アプローチに相補的な利点をもたらし、ロバスト性を向上させることを示します。
この手法は、事前トレーニングと併用して使用すると、さまざまな結果が得られるが、より自然なタイプのデータセットシフトでは、パフォーマンスが良くないようだ。
論文 参考訳(メタデータ) (2020-06-19T05:08:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。